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Formal verification: successes and frontiers

@ industrial impact in checking correctness of
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Formal verification and control in the real world
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@ tech trends: advances in sensing, networking and embedded computation
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Formal verification and control in the real world

@ integration of learning from data within model-based verification & control
(“learning for verification and control”)

@ certified reinforcement learning for policy synthesis
(“certified learning”)




Formal verification and control in the real world

@ verification and control of complex models

e hybrid models with uncertainty, noise
e via formal abstractions




Building automation systems - a CPS exemplar

Building automation system setup in rooms 478/9 at Oxford CS

@ advanced modelling for smart buildings

@ applications: certifiable energy management
@ control of temperature, humidity, CO,
© model-based predictive maintenance of devices
@ fault-tolerant certified control
@ demand-response over smart grids
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Building automation systems — a SHS

model CO, dynamics, coupled with temperature evolution

A
Xpt1 = Xk + v (_HOmek + V{O,C}(Cout - xk)) + 1pCocc + 0%

A 1
Yt =Ykt & (ﬂomﬂ(Tset = k) + #o,cy g (Tout = }/z\-)) + 1 Tocex + 0y
where Ty = vxp + ¢
x - zone CO, level

i/ - zone temperature

Tset - set temperature (air circulation)
Tout - outside temperature (window)
Toce - generated heat (occupants)

oy - variance of
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Building automation systems — a SHS

€O, levels Zone Temperature
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CPS models: both finite and

OXFORD

finite-space Markov chain Markov process
(5,T) (8,7)
S = (z1,22,23,24) $ = R2

P o pu 1 e T2 () (rm())

= oo e e 2" ’

T= T(dx|s) = TR dx

Pa1 :
P(z1,{22,23}) = p12 + p13 = [, T(dx[s), ACS
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Stochastic hybrid (discrete/continuous) systems

o discrete-time, stochastic hybrid system (SHS)
(8, Ts)

8 = Ugea({q} x X), Q a discrete set of modes, X = R"
Ts : 8 x 8 — [0, 1] specifies the dynamics of process at any hybrid point (g, x)

@ model semantics: initial state 77 : 8 — [0, 1];
at any point s = (g, x),
@ sample discrete kernel Tq — select location q’
@ conditional on q’, sample continuous kernel Ty — select point x’

Alessandro Abate, CS, Oxford




Stochastic hybrid (discrete/continuous) systems

o T, :8 x 8 — [0,1] specifies the dynamics of process at point s = (g, x):

S |g) = T (dx'|(q,x), ) 1(ql(g,x)), if g = g (no transition)
@19 = { T el ), it 7 o (ranerion)

@ equivalent dynamical representation
e.g., SDE with NL drift and Gaussian noise

s(k+1) = f(s(k)) +g(s(k)n(k), n(-) ~N(0,1)

[AA et al - Automatica 08]
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Stochastic hybrid (discrete/continuous) systems

o T, :8 x 8 — [0,1] specifies the dynamics of process at point s = (g, x):

S |g) = T (dx'|(q,x), ) 1(ql(g,x)), if g = g (no transition)
@19 = { T el ), it 7 o (ranerion)

@ equivalent dynamical representation
e.g., SDE with NL drift and Gaussian noise
s(k+1) = f(s(k)) +&(s(k))n(k), n(-)~N(O,1)
@ can be control/action dependent (u € U):

To(ds' |s,u) = T (dx'|(q,x),1u,q)T,(q|(q,x),u),  if ¢ =g (no transition)
° ’ T (dx'|(q,x),u,q")T;(q'|(q,x),u), if g # q (transition)

Ts:8xUx8—[0,1]

[AA et al - Automatica 08]
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Probabilistic model checking of complex models

@ general specifications expressed as PCTL formulae, e.g.

@ simplest instance: probabilistic safety is the probability that the execution,
started at s, stays in safe set A during the time horizon [0, N|

e select p € [0,1]; probabilistic safe set with safety level p is
S(p) = {s € 8:Ps(A) 2 p}

e PCTL formula: P<q (true usn —|A)

ndro Abate, CS, Oxford



Probabilistic model checking of complex models

@ general specifications expressed as PCTL formulae, e.g.

@ simplest instance: probabilistic safety is the probability that the execution,
started at s, stays in safe set A during the time horizon [0, N|

Ps(A) =Ps(sg € A, Vk € [0,N])
e select p € [0,1]; probabilistic safe set with safety level p is
S(p) ={s € 8:Ps(A) > p}
e PCTL formula: P<y_, (true USY —A)

@ P3(A) can be fully characterised (and optimised)
e issues with computation of Ps(A) and of S(p)
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Formal abstractions

model
checking
abstract automatic ¢-spec holds, or
¢-specification verification P '
model ¢-spec does not hold
¢-quantitative refine back
abstraction
complex <pecification spec holds, or
model P if not, spec does not hold
tune ¢
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Formal abstractions: algorithm

@ approximate stochastic process (8,T) as MC (S, T), where
o S={z1,20,...,2p} — finite set of abstract states

o T:8 x 8 — [0,1] — transition probability matrix
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Formal abstractions: algorithm
@ approximate stochastic process (8,T) as MC (S, T), where
o S={z1,2,...,2p} — finite set of abstract states
o T:8x8 —[0,1] — transition probability matrix
@ algorithm:

input: stochastic process (8, 7)

output: MC (S5, T)
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Formal abstractions: algorithm

@ approximate stochastic process (8,T) as MC (S, T), where
o S={z1,20,...,2p} — finite set of abstract states

o T:8 x 8 — [0,1] — transition probability matrix
@ algorithm:

input: stochastic process (8,7)
1 select finite partition § = ulesi
2 select representative points z; € S;

3 define finite state space S := {z;,i =

|
—_
<
$
S
—

output: MC (S, T)
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Formal abstractions: algorithm

@ approximate stochastic process (8,T) as MC (S, T), where
o S={z1,2,...,2p} — finite set of abstract states

o T:8 x 8 — [0,1] — transition probability matrix
@ algorithm:

input: stochastic process (8,7)
select finite partition § = ulesi
select representative points z; € S;

define finite state space S := {z;,i=1,..,p}

AW N =

compute transition probability matrix: T(z;,z;) = T(S; | z;)
output: MC (S, T)
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Formal abstractions: algorithm
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o T:8x8 — [0,1] — transition probability matrix
@ algorithm:

input: stochastic process (8,7)
select finite partition § = ulesi
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A~ NN =

compute transition probability matrix: T(z;,z;) = T(S; | z;)
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Model checking probabilistic safety via formal abstractions

@ safety set A C §, time horizon N, safety level p
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Model checking probabilistic safety via formal abstractions

OXFORD

@ safety set A C §, time horizon N, safety level p
@ J-abstract (8,7) as MC (S, T), so that A — Ay,
quantify error (0, )

= probabilistic safe set

S(p) ={s €8:Ps(A) > p}
={se€8:(1-P(A)) <1-—p}
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Model checking probabilistic safety via formal abstractions

OXFORD

@ safety set A C §, time horizon N, safety level p
@ J-abstract (8,7) as MC (S, T), so that A — Ay,
quantify error (0, )

= probabilistic safe set

S(p) ={s €8:Ps(A) > p}
={se€8:(1-P(A)) <1-—p}

can be computed via
Z(s(P-Fg) = Sat (I[)Slfpf{f (true usv —\Azg))

= {z €S:z ]Pg],p,g (true ysnN ﬁAo‘)}
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Formal abstractions: error ¢

OXFORD

e consider T(d5|s) = t(5|s)d5; assume t is Lipschitz continuous, namely

JO <l <oo:  |t(3ls) —t(5|s")| < ho||s =], Vs, s,5€8
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Formal abstractions: error ¢

e consider T(d5|s) = t(5|s)d5; assume t is Lipschitz continuous, namely

JO <l <oo:  |t(3ls) —t(5|s")| < ho||s =], Vs, s,5€8

® one-step error (related to approximate probabilistic bisimulation)
€ =h.0%(A)
e 0 — max diameter of partition sets

o Z(A) — volume of set of interest
e  -step error (tuneable via )
&(6,N) =¢eN
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FAUST?: software for formal abstractions

http://sourceforge.net/projects/faust2
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FAUST?: software for formal abstractions

http://sourceforge.net/projects/faust2
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StocHy: software for formal abstractions

verification

e abstraction based

e novel algorithm with
tighter bounds and
more scalability

.

StocHy

gitlab.com/natchi92/StocHy

ification and Control of SHS
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StocHy: software for formal abstractions

verification

e abstraction based

e novel algorithm with
tighter bounds and
more scalability

synthesis Stoc Hy

e abstraction based

e optimisation via sparse
matrices

gitlab.com/natchi92/StocHy
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StocHy: software for formal abstractions

verification simulation
e abstraction based e automatically generates
statistics

e novel algorithm with o L
e visualisation via time

tighter bounds and : .
more scalability varying histograms

oS

synthesis Stoc Hy features

e modular
e C+ + implementation

e abstraction based

e optimisation via sparse
e extendable

matrices ) )
e multiple options

gitlab.com/natchi92/StocHy

fication and Control of SHS
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StocHy: software for formal abstractions

verification simulation
e abstraction based e automatically generates
statistics

o novel algorithm with T
e visualisation via time

tighter bounds and o hi
more scalability varying histograms

synthesis Stoc Hy features

e modular
e C+ + implementation

e abstraction based

e optimisation via sparse tendabl
e extendable

matrices . )
e multiple options

gitlab.com/natchi92/StocHy

fication and Control of SHS
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Building automation systems — case study

A
Y1 =Xet+ 3 (—HOmek + 10,0} (Cout — xk)) + 15 Cocc + 0x

A 1
Y1 =Yk + c (10Nm(Tset —Yk) + o) E(Tout - l/k)) + L Tocc i + 0y

where Tocep = VX + 4
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Building automation systems — case study

e safe set A = [300 700|ppm x [19 21]°C CXEORD
@ air circulation: closed-loop control policy at k+ 1

OFF if (v, ) <A

ON if (xkr }//\’) > A

stay put else

@ specification:

P_, {DS (x,y) € A}

@ 5 hours, 8:00-13:00 (A = 15 min, N=
divided into
o 8:00-8:30 (N=2) - (E,C)
o 8:30-11:30 (N=12) - (F,C)

e 11:30-13:00 (N=6) - (F,0) H‘

~—
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Building automation systems — case study
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Thank you for your attention

For more info: aabate@cs.ox.ac.uk
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