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Formal verification: successes and frontiers

industrial impact in checking correctness of

protocols, hardware circuits, and software
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[courtesy M. Zamani]

Formal verification and control in the real world

tech trends: advances in sensing, networking and embedded computation
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Formal verification and control in the real world

1 integration of learning from data within model-based verification & control
(“learning for verification and control”)

2 certified reinforcement learning for policy synthesis
(“certified learning”)
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Formal verification and control in the real world

verification and control of complex models

hybrid models with uncertainty, noise
via formal abstractions
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Building automation systems - a CPS exemplar

Building automation system setup in rooms 478/9 at Oxford CS

advanced modelling for smart buildings

applications: certifiable energy management
1 control of temperature, humidity, CO2
2 model-based predictive maintenance of devices
3 fault-tolerant certified control
4 demand-response over smart grids
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Building automation systems – a SHS

model CO2 dynamics, coupled with temperature evolution

xk+1 = xk +
∆
V

(
−1ONmxk + µ{O,C}(Cout − xk)

)
+ 1FCocc + σxwk

yk+1 = yk +
∆
C

(
1ONm(Tset − yk) + µ{O,C}

1
R
(Tout − yk)

)
+ 1FTocc,k + σywk

where Tocc,k = νxk + ζ

x - zone CO2 level

y - zone temperature

Tset - set temperature (air circulation)

Tout - outside temperature (window)

Tocc - generated heat (occupants)

σ(·) - variance of noise wk ∼ N(0, 1)
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Building automation systems – a SHS
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C 94.41 J/oC
Tset 20 oC
Tout 24 oC

ν 2.4 ·10−4

ζ 0.0107

air circulation: ON
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CPS models: both finite and uncountable

finite-space Markov chain uncountable-space Markov process

(S, T) (S,T)

S = (z1, z2, z3, z4) S = R2

T =

 p11 · · · p14
· · · · · · · · ·
p41 · · · · · ·

 T(dx|s) = e−
1
2 (x−m(s))T Σ−1(s)(x−m(s))
√

2π|Σ(s)|1/2 dx

P(z1, {z2, z3}) = p12 + p13 P(s, A) =
∫

A T(dx|s), A ⊆ S
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Stochastic hybrid (discrete/continuous) systems
discrete-time, stochastic hybrid system (SHS)

(S, Ts)

S = ∪q∈Q({q} ×X),Q a discrete set of modes, X = Rn

Ts : S× S→ [0, 1] specifies the dynamics of process at any hybrid point (q, x)

model semantics: initial state π : S→ [0, 1];
at any point s = (q, x),

1 sample discrete kernel Tq → select location q′
2 conditional on q′, sample continuous kernel Tx → select point x′
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[AA et al - Automatica 08]

Stochastic hybrid (discrete/continuous) systems

Ts : S× S→ [0, 1] specifies the dynamics of process at point s = (q, x):

Ts(ds′ |s) =
{

Tx(dx′|(q, x), q)Tq(q|(q, x)), if q′ = q (no transition)
Tx(dx′|(q, x), q′)Tq(q′|(q, x)), if q′ 6= q (transition)

equivalent dynamical representation

e.g., SDE with NL drift and Gaussian noise

s(k + 1) = f (s(k)) + g(s(k))η(k), η(·) ∼ N(0, 1)

can be control/action dependent (u ∈ U):

Ts(ds′ |s, u) =
{

Tx(dx′|(q, x), u, q)Tq(q|(q, x), u), if q′ = q (no transition)
Tx(dx′|(q, x), u, q′)Tq(q′|(q, x), u), if q′ 6= q (transition)

Ts : S×U× S→ [0, 1]
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Probabilistic model checking of complex models

general specifications expressed as PCTL formulae, e.g.

simplest instance: probabilistic safety is the probability that the execution,
started at s, stays in safe set A during the time horizon [0, N]

Ps(A) = Ps(sk ∈ A, ∀k ∈ [0, N])

select p ∈ [0, 1]; probabilistic safe set with safety level p is

S(p) = {s ∈ S : Ps(A) ≥ p}

PCTL formula: P≤1−p
(
true U≤N ¬A

)

Ps(A) can be fully characterised (and optimised)

issues with computation of Ps(A) and of S(p)
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Formal abstractions
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Formal abstractions: algorithm

approximate stochastic process (S,T) as MC (S, T), where

S = {z1, z2, . . . , zp} – finite set of abstract states

T : S× S→ [0, 1] – transition probability matrix

algorithm:

input: stochastic process (S,T)

1 select finite partition S = ∪p
i=1Si

2 select representative points zi ∈ Si

3 define finite state space S := {zi, i = 1, ..., p}
4 compute transition probability matrix: T(zi, zj) = T(Sj | zi)

output: MC (S, T)
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Model checking probabilistic safety via formal abstractions

safety set A ⊂ S, time horizon N, safety level p

δ-abstract (S,T) as MC (S, T), so that A→ Aδ,

quantify error ξ(δ, N)

⇒ probabilistic safe set

S(p) = {s ∈ S : Ps(A) ≥ p}
= {s ∈ S : (1− Ps(A)) ≤ 1− p}

can be computed via

Zδ(p+ξ)
.
= Sat

(
P≤1−p−ξ

(
true U≤N ¬Aδ

))
=
{

z ∈ S : z |= P≤1−p−ξ

(
true U≤N ¬Aδ

)}
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Formal abstractions: error ξ

consider T(ds̄|s) = t(s̄|s)ds̄; assume t is Lipschitz continuous, namely

∃ 0 ≤ hs < ∞ :
∣∣t(s̄|s)− t(s̄|s′)

∣∣ ≤ hs
∥∥s− s′

∥∥ , ∀s, s′, s̄ ∈ S

• one-step error (related to approximate probabilistic bisimulation)

ε = hsδL (A)

δ – max diameter of partition sets
L (A) – volume of set of interest

• N-step error (tuneable via δ)

ξ(δ, N) = εN

→ improved and generalised error
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FAUST2: software for formal abstractions

http://sourceforge.net/projects/faust2

sequential, adaptive, anytime
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StocHy: software for formal abstractions

gitlab.com/natchi92/StocHy
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Building automation systems – case study

xk+1 = xk +
∆
V

(
−1ONmxk + µ{O,C}(Cout − xk)

)
+ 1FCocc + σxwk

yk+1 = yk +
∆
C

(
1ONm(Tset − yk) + µ{O,C}

1
R
(Tout − yk)

)
+ 1FTocc,k + σywk

where Tocc,k = νxk + ζ

(F,C) (F,O)

(E,C) (E,O)
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Building automation systems – case study
safe set A = [300 700]ppm× [19 21]oC
air circulation: closed-loop control policy at k + 1 OFF if (xk, yk) ≤ A

ON if (xk, yk) ≥ A
stay put else

specification:

P=?

[
�≤20(x, y) ∈ A

]

5 hours, 8:00-13:00 (∆ = 15 min, N=20),
divided into

8:00-8:30 (N=2) - (E,C)
8:30-11:30 (N=12) - (F,C)
11:30-13:00 (N=6) - (F,O)

(F,C) (F,O)

(E,C) (E,O)
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Building automation systems – case study
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