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Introduction

• PDMPs are Markov Processes given by deterministic dynamics
between random events

• ∃ large literature on the subject & numerous types of PDMPs

• used in a variety of fields (molecular biology, communication
networks, ...)

Here we restrict attention to the following specific class:
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• E = {1, . . . ,m},

• F 1, . . . ,Fm smooth vector fields on Rd ,

• (Φ1
t ), . . . , (Φm

t ) induced flows

: deterministic components

• M ⊂ Rd positive invariant set under each Φi ,

• For x ∈ M, (Qij(x)) Markov transition matrix over E (irreducible,
aperiodic, and continuous in x)

: switching mechanism

.
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• (Φ1
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The PDMP Zt = (Xt , It) ∈ M × E is constructed as follows:

• Suppose Z0 = (X0, I0) = (x , i).
Begin:
− Draw a random variable U1 with exponential distribution

P(U1 > t) = e−λt .

− Follow Φi during time U1:

Xt = Φi
t(x) for t ≤ U1; It = I0 = i , for t<U1.

− Pick j ∈ E with probability Qij(XU1) and set IU1 = j .
− Repeat.
End
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In short,
Ẋt = F It (Xt),

where
P(It+s = j |Ft , It = i) = λQij(Xt)s + o(s)

for all j 6= i .
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This makes

(Zt) a continuous-time

Feller

Markov process:

Pt f (z) = Ez(f (Zt))

maps Cb(M) into itself.

However, (Zt) is not strong Feller!
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Main Goals

Our main goal is to

Investigate the long term behavior of (Zt)

Describe the
• support of its laws,
• its invariant probability measures and their supports

Give conditions ensuring
• Uniqueness (of invariant probability measure),
• Ergodicity,
• Exponential convergence, ...

Discuss some applications to ecological and/or epidemic models
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A support theorem
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A (simple) linear example
Lotka Volterra

A linear example

E = {1, 2},M = R2

F 1(x) = Ax ,F 2(x) = A(x − e)

A =

(
−1 1
1 −1

)
, e =

(
1
0

)
.

λ = 1,Qij(x) = 1/2.
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A (simple) linear example
Lotka Volterra

Lotka-Volterra (based on B & Lobry, AAP 2016)

E = {1, 2},M := R+ × R+.

F 1,F 2 two competitive Lotka-Volterra vector fields

F i (x , y) =

{
αix(1− aix − biy)
βiy(1− cix − diy)

αi , βi , ai , bi , ci , di > 0,

both favorable to the same species x :

ai < ci and bi < di .
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A (simple) linear example
Lotka Volterra

,

Figure: Phase portraits of F 1 and F 2

Q(x) =

(
1− p p
1− p p

)
.

Different values of p, λ lead to different behaviors ↪→

Michel Benaïm & Tobias Hurth (Neuchâtel)
Piecewise Deterministic Markov Processes and (Ecological) Applications



Introduction
Motivating Examples

Some Math
Application to Lotka Volterra

A (simple) linear example
Lotka Volterra

,

Figure: Phase portraits of F 1 and F 2

Q(x) =

(
1− p p
1− p p

)
.

Different values of p, λ lead to different behaviors ↪→

Michel Benaïm & Tobias Hurth (Neuchâtel)
Piecewise Deterministic Markov Processes and (Ecological) Applications



Introduction
Motivating Examples

Some Math
Application to Lotka Volterra

A (simple) linear example
Lotka Volterra

Figure: Extinction of y
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A (simple) linear example
Lotka Volterra

Figure: Persistence
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A (simple) linear example
Lotka Volterra

Figure: Extinction of x
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A (simple) linear example
Lotka Volterra

How is this possible?

Have look at this picture:

x

y

(0, 0)
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A (simple) linear example
Lotka Volterra

Figure: Extinction of x or y
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A support theorem
Invariant probability measures
Accessible Set
Uniqueness of invariant measure
Convergence

Some Math
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A support theorem
Invariant probability measures
Accessible Set
Uniqueness of invariant measure
Convergence

• Back to the general model:

Ẋt = F It (Xt)

P(It+s = j |Ft , It = i) = λQij(Xt)s + o(s)

for all j 6= i .
• F 1, . . . ,Fm smooth vector fields on Rd ,

• (Qij(x)) Markov transition matrix over E (irreducible, aperiodic,
and continuous in x)

The results here are mainly based on
– Bakhtin & H (Nonlinearity 2012)
– B, Le Borgne, Malrieu, Zitt, (Annales IHP 2015)
– B, H, & Strickler (ECP 2018)
– B & H (2021)
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A support theorem
Invariant probability measures
Accessible Set
Uniqueness of invariant measure
Convergence

A support theorem

co(F )(x) := conv(F 1(x), . . . ,Fm(x)),

• Sx is the set of (absolutely continuous) maps η : R+ → Rd

solutions to
η̇ ∈ co(F )(η), η(0) = x

• equivalently:

η ∈ Sx ⇔ η̇(t) =
m∑
i=1

ui (t)F i (η(t)), η(0) = x

with ui ∈ L∞, ui ≥ 0,
∑

ui (t) = 1.
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A support theorem
Invariant probability measures
Accessible Set
Uniqueness of invariant measure
Convergence

Clearly
X0 = x ⇒ (Xt) ∈ Sx ,

but more can be said:

Theorem
If X0 = x , then the support of the law of (Xt) equals Sx .
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A support theorem
Invariant probability measures
Accessible Set
Uniqueness of invariant measure
Convergence

Invariant probability measures

A probability measure on M × E is called invariant for (Zt)
whenever

Law(Z0) = µ⇒ Law(Zt) = µ

⇔ µPt = µ

Ergodic measure = extremal invariant probability measure
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• Lebesgue measure on Rd × E : λ(A× {i}) = Vol(A)

Proposition

If µ is ergodic, it is either absolutely continuous (with respect to
Lebesgue measure) or singular.

Open problem: Nothing is known in general (in the a-c case) about
the regularity of the density.

• except in dimension 1: (Bakhtin, H, and Mattingly, Nonlinearity
2015)

• and for particular 2-dimensional systems (Bakhtin, H, Lawley, and
Mattingly, Nonlinearity 2018)
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Accessible Set

• (Ψt) the set-valued semi flow induced by η̇ ∈ co(F )(η):

Ψt(x) = {η(t) : η ∈ Sx}.

Accessible Set from x:

Γx = {Ψt(x) : t ≥ 0}

In words: p is accessible from x if we can reach every
neighborhood of p using the flows Φ1, . . . ,Φm

Accessible Set: Γ =
⋂

x∈M Γx

Accessible Set from A: ΓA =
⋂

x∈A Γx
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Proposition

(i) Γ is closed (possibly empty), connected, and invariant
(∀t ≥ 0,Ψt(Γ) = Γ).

(ii) Either Γ has empty interior or its interior is dense in Γ.

Proposition

(i) Γ× E ⊂ supp(µ) for all µ invariant.
(ii) If Γ has nonempty interior, then Γ× E = supp(µ) for

all µ invariant.
(iii) If Γ is compact, there exists µ invariant such that

Γ× E = supp(µ).
(iv) If ∃! invariant probability measure µ, then

Γ× E = supp(µ).
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Some remarks:

• When Γ has empty interior, the inclusion Γ× E ⊂ supp(µ) can
be strict!

• When Γ has non-empty interior, Γ× E = supp(µ) BUT there
may be several invariant probability measures!

Furstenberg (1961) showed that there exists a smooth diffeo on the
torus, preserving the area, topologically transitive but not uniquely
ergodic.
⇒ One can construct a flow with the same properties.

⇒ Natural question: Under which conditions is there (at most) one
invariant probability measure?
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Uniqueness and weak bracket

The Weak Bracket condition
For vector fields F ,G ,

[F ,G ](x) = DG (x)F (x)− DF (x)G (x).

Set

F0 = {F 1, . . . ,Fm},Fk+1 := Fk ∪ {[F i ,V ] : V ∈ Fk}

Weak Bracket at x ∈ M:

For some k ≥ 1,Fk has full rank at x .
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Uniqueness

Theorem
Suppose ∃x ∈ Γ at which the weak bracket condition holds. Then
there is at most one invariant probability measure µ.

If µ exists, it is absolutely continuous with respect to Lebesgue
measure and ∀f ∈ L1(µ), z ∈ M × E ,

Pz

(
lim
t→∞

1
t

∫ t

0
f (Zs)ds = µ(f )

)
= 1.

The existence is not guaranteed in general, but is ok when M is
compact or under the existence of a suitable Lyapunov function
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• Weak Bracket ; convergence in law of (Zt)!

Indeed,
M = S1 = R/Z,Φ1

t (x) = (x + t) mod 1.

,

Figure: designed by freepick

Here µ = Lebesgue, but Law(Zt) = δ(Φt(x),1) 9 µ
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Convergence and strong bracket

The Strong Bracket condition

G0 = {F i − F j : i , j = 1, . . .m},

Gk+1 = Gk ∪ {[F i ,V ] : V ∈ Gk}

Strong Bracket at x ∈ M:

For some k ≥ 1,Gk has full rank at x .
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Convergence

• We assume here that there exists a convenient Lyapunov function
controlling the process at infinity, i.e.:

– V : M × E → R+, proper,

– PTV ≤ ρV + K , 0 ≤ ρ < 1,K ≥ 0,T > 0.

• If M is compact, V ≡ 1 always works!

Theorem
Suppose ∃p ∈ Γ at which the strong bracket condition holds.
Then ∃C , κ > 0 such that for all f measurable

|Pt f (z)− µ(f )| ≤ Ce−κt(1 + V (z))‖f ‖V .

Here ‖f ‖V = sup |f (z)|
1+V (z) .
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Convergence

An alternative condition (sometimes very useful):

Theorem
Suppose ∃p ∈ Γ at which the weak bracket condition holds and
∃q ∈ Γ at which a barycentric combination of the F i vanishes.
Then ∃C , κ > 0 such that for all f measurable

|Pt f (z)− µ(f )| ≤ Ce−κt(1 + V (z))‖f ‖V .
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Application to LV

E = {1, 2},M := R+ × R+.
F 1,F 2 two competitive LV favorable to x

F i (x , y) =

{
αix(1− aix − biy) = xU i (x , y)
βiy(1− cix − diy) = yV i (x , y)

,
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Invasion rates

• On the "face" {y = 0} the system is a 1D PDMP obtained by
switching between the ode’s

ẋ = xU i (x , 0) = xαi (1− aix), i = 1, 2.

• The process eventually enters the interval [ 1
a1
, 1
a2

].

• Accessibility + Bracket condition ⇒ ∃! invariant probability
measure ν on R∗+ × E for this system supported by [ 1

a1
, 1
a2

]× E .

Invasion rate of y :

Λy =

∫
V i (x , 0)ν(dxdi).
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A persistence theorem

• We suppose that Λx ,Λy > 0.
•

M0 = R∗+ × R∗+ = M \ ({x = 0} ∪ {y = 0})

Persistence Theory (not the subject today) ⇒

For the system restricted to M0 × E (not M × E !) the map

V (x , y , i) =
1
xθ

+
1
yθ

is a Lyapunov function for some θ > 0.
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• Combined with the results presented here, this leads to

Theorem (B, Lobry 16 + B, H, Strickler 19)

There exists a unique invariant probability measure Π on M0 × E ,
absolutely continuous, and ∀z ∈ M0 × E

‖Pz(Zt ∈ ·)− Π(·)‖ ≤ C (1 + x−θ + y−θ)e−κt

with C , κ > 0.
Moreover,

supp(Π) = Γ× E

and Γ is simply connected.
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Figure: The set Γ
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