Piecewise Deterministic Markov Processes and (Ecological) Applications

Michel Benaïm & Tobias Hurth (Neuchâtel)

Symposium on Stochastic Hybrid Systems and Applications, July, 2021

Michel Benaïm & Tobias Hurth (Neuchâtel)

Talk based on results obtained over the recent years in collaboration with several colleagues

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Talk based on results obtained over the recent years in collaboration with several colleagues

- Bakhtin & Hurth, (Nonlinearity, 2012)
- Benaïm, Le Borgne, Malrieu, & Zitt (ECP 2012; AAP 2014; IHP 2015)
- B & Lobry (AAP 2016)
- B, Colonius, & Lettau (Nonlinearity 2017)
- B, H, & Strickler (ECP 2018)
- Bakhtin, H, & Mattingly (Nonlinearity 2015)
- Bakhtin, H, Lawley, & Mattingly (Nonlinearity 2018)
- B & Strickler (AAP 2019)
- <mark>B & H</mark> (2021)

Introduction

• PDMPs are Markov Processes given by *deterministic dynamics* between *random events*

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Introduction

• PDMPs are Markov Processes given by *deterministic dynamics* between *random events*

 $\bullet \ \exists$ large literature on the subject & numerous types of PDMPs

- ∢ ≣ ▶

3 N

э

Introduction

• PDMPs are Markov Processes given by *deterministic dynamics* between *random events*

 $\bullet \ \exists$ large literature on the subject & numerous types of PDMPs

 \bullet used in a variety of fields (molecular biology, communication networks, $\ldots)$

Introduction

• PDMPs are Markov Processes given by *deterministic dynamics* between *random events*

 $\bullet \ \exists$ large literature on the subject & numerous types of PDMPs

 \bullet used in a variety of fields (molecular biology, communication networks, $\ldots)$

Here we restrict attention to the following specific class:

- $E = \{1, \ldots, m\}$,
- F^1, \ldots, F^m smooth vector fields on \mathbb{R}^d ,
- $(\Phi^1_t), \ldots, (\Phi^m_t)$ induced flows
- $M \subset \mathbb{R}^d$ positive invariant set under each Φ^i ,

• For $x \in M$, $(Q_{ij}(x))$ Markov transition matrix over E (irreducible, aperiodic, and continuous in x)

- ・ 同 ト ・ ヨ ト - - ヨ

- $E = \{1, \ldots, m\}$,
- F^1, \ldots, F^m smooth vector fields on \mathbb{R}^d ,
- $(\Phi^1_t), \ldots, (\Phi^m_t)$ induced flows : deterministic components
- $M \subset \mathbb{R}^d$ positive invariant set under each Φ^i ,
- For $x \in M$, $(Q_{ij}(x))$ Markov transition matrix over E (irreducible, aperiodic, and continuous in x) : switching mechanism.

The PDMP $Z_t = (X_t, I_t) \in M \times E$ is constructed as follows:

イロト イポト イヨト イヨト

Michel Benaïm & Tobias Hurth (Neuchâtel)

イロト イポト イヨト イヨト

• Suppose
$$Z_0 = (X_0, I_0) = (x, i)$$
.

- Suppose $Z_0 = (X_0, I_0) = (x, i)$. Begin:
- Draw a random variable U_1 with exponential distribution

$$\mathsf{P}(U_1 > t) = e^{-\lambda t}.$$

・ 「 ト ・ ヨ ト ・ ヨ ト ・

3

- Suppose $Z_0 = (X_0, I_0) = (x, i)$. Begin:
- Draw a random variable U_1 with exponential distribution

$$\mathsf{P}(U_1 > t) = e^{-\lambda t}.$$

- Follow Φ^i during time U_1 :

$$X_t = \Phi_t^i(x)$$
 for $t \leq U_1$; $I_t = I_0 = i$, for $t < U_1$.

伺 ト イヨト イヨト

3

- Suppose $Z_0 = (X_0, I_0) = (x, i)$. Begin:
- Draw a random variable U_1 with exponential distribution

$$\mathsf{P}(U_1 > t) = e^{-\lambda t}.$$

- Follow Φ^i during time U_1 :

$$X_t = \Phi_t^i(x)$$
 for $t \le U_1$; $I_t = I_0 = i$, for $t < U_1$.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

- Pick $j \in E$ with probability $Q_{ij}(X_{U_1})$ and set $I_{U_1} = j$.

- Suppose $Z_0 = (X_0, I_0) = (x, i)$. Begin:
- Draw a random variable U_1 with exponential distribution

$$\mathsf{P}(U_1 > t) = e^{-\lambda t}.$$

- Follow Φ^i during time U_1 :

$$X_t = \Phi_t^i(x)$$
 for $t \leq U_1$; $I_t = I_0 = i$, for $t < U_1$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

- Pick $j \in E$ with probability $Q_{ij}(X_{U_1})$ and set $I_{U_1} = j$. - Repeat. End

In short,

 $\dot{X}_t = F^{I_t}(X_t),$

・ロン ・御と ・思と ・ 思と

In short,

$$\dot{X}_t = F^{I_t}(X_t),$$

where

$$\mathsf{P}(I_{t+s}=j|\mathcal{F}_t,I_t=i)=\lambda Q_{ij}(X_t)s+o(s)$$

◆□▶ ◆課▶ ◆語▶ ◆語≯

for all $j \neq i$.

This makes

 (Z_t) a continuous-time

Markov process:

- * @ * * 图 * * 图 *

Michel Benaïm & Tobias Hurth (Neuchâtel)

This makes

 (Z_t) a continuous-time Feller Markov process:

$$P_t f(z) = \mathbb{E}_z(f(Z_t))$$

э

・ 同 ト ・ ヨ ト ・ ヨ ト

maps $C_b(M)$ into itself.

This makes

 (Z_t) a continuous-time Feller Markov process:

$$P_t f(z) = \mathbb{E}_z(f(Z_t))$$

(E)

э

maps $C_b(M)$ into itself.

However, (Z_t) is not strong Feller!

Our main goal is to

Investigate the long term behavior of (Z_t)

▲御▶ ▲恵▶ ▲恵▶

Our main goal is to

Investigate the long term behavior of (Z_t)

- ∢ ≣ ▶

3 N

э

Describe the

• support of its laws,

Our main goal is to

Investigate the long term behavior of (Z_t)

Describe the

- support of its laws,
- its invariant probability measures and their supports

Our main goal is to

Investigate the long term behavior of (Z_t)

Describe the

- support of its laws,
- its invariant probability measures and their supports

Give conditions ensuring

• Uniqueness (of invariant probability measure),

Our main goal is to

Investigate the long term behavior of (Z_t)

Describe the

- support of its laws,
- its invariant probability measures and their supports

Give conditions ensuring

- Uniqueness (of invariant probability measure),
- Ergodicity,

Our main goal is to

Investigate the long term behavior of (Z_t)

Describe the

- support of its laws,
- its invariant probability measures and their supports

Give conditions ensuring

- Uniqueness (of invariant probability measure),
- Ergodicity,
- Exponential convergence, ...

Our main goal is to

Investigate the long term behavior of (Z_t)

Describe the

- support of its laws,
- its invariant probability measures and their supports

Give conditions ensuring

- Uniqueness (of invariant probability measure),
- Ergodicity,
- Exponential convergence, ...

Discuss some applications to ecological and/or epidemic models

Outline

- 2 Motivating Examples
 - A (simple) linear example
 - Lotka Volterra

3 Some Math

- A support theorem
- Invariant probability measures
- Uniqueness of invariant measure
- Convergence

A (simple) linear example Lotka Volterra

- 《聞》 《思》 《思》

Motivating Examples

Michel Benaïm & Tobias Hurth (Neuchâtel)

A (simple) linear example Lotka Volterra

.

< 同 ▶

臣▶ 唐

A linear example

$$E = \{1, 2\}, M = \mathbb{R}^{2}$$

$$F^{1}(x) = Ax, F^{2}(x) = A(x - e)$$

$$A = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}, e = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\lambda = 1, Q_{ij}(x) = 1/2.$$

Michel Benaïm & Tobias Hurth (Neuchâtel)

A (simple) linear example Lotka Volterra

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ →

э

Lotka-Volterra (based on B & Lobry, AAP 2016)

$$E = \{1, 2\}, M := \mathbb{R}_+ \times \mathbb{R}_+.$$

 F^1, F^2 two competitive Lotka-Volterra vector fields

$$F^{i}(x,y) = \begin{cases} \alpha_{i}x(1-a_{i}x-b_{i}y) \\ \beta_{i}y(1-c_{i}x-d_{i}y) \end{cases}$$
$$\alpha_{i},\beta_{i},a_{i},b_{i},c_{i},d_{i} > 0,$$

A (simple) linear example Lotka Volterra

A B F A B F

Lotka-Volterra (based on B & Lobry, AAP 2016)

$$E = \{1, 2\}, M := \mathbb{R}_+ \times \mathbb{R}_+.$$

 F^1, F^2 two competitive Lotka-Volterra vector fields

$$F^{i}(x,y) = \begin{cases} \alpha_{i}x(1-a_{i}x-b_{i}y) \\ \beta_{i}y(1-c_{i}x-d_{i}y) \end{cases}$$
$$\alpha_{i},\beta_{i},a_{i},b_{i},c_{i},d_{i} > 0,$$

both favorable to the same species x:

$$a_i < c_i$$
 and $b_i < d_i$.

A (simple) linear example Lotka Volterra

・ロト ・伊ト ・モト ・モト

Figure: Phase portraits of F^1 and F^2

Michel Benaïm & Tobias Hurth (Neuchâtel)

A (simple) linear example Lotka Volterra

< 4 →

Figure: Phase portraits of F^1 and F^2

$$Q(x) = \left(\begin{array}{cc} 1-p & p \\ 1-p & p \end{array}\right)$$

Different values of p, λ lead to different behaviors \hookrightarrow

A (simple) linear example Lotka Volterra

э

Figure: Extinction of y

A (simple) linear example Lotka Volterra

∢ 臣 ≯

< □ > < 同 > <

Figure: Persistence
A (simple) linear example Lotka Volterra

注▶ 法

< □ ▶ < 一 ▶

Figure: Persistence

A (simple) linear example Lotka Volterra

∢ 臣 ≯

< □ > < 同 > <

Figure: Extinction of x

A (simple) linear example Lotka Volterra

・ロト ・聞ト ・ヨト ・ヨト

How is this possible?

A (simple) linear example Lotka Volterra

How is this possible? Have look at this picture:

A (simple) linear example Lotka Volterra

臣▶ 唐

< 日 ▶

Figure: Extinction of x or y

A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure Convergence

・ロト ・伊ト ・モト ・モト

Some Math

Michel Benaïm & Tobias Hurth (Neuchâtel)

Introduction Motivating Examples Some Math Application to Lotka Volterra Accessible Set Uniqueness of invariant measure Convergence

・ロト ・聞 ト ・ 思 ト ・ 思 ト

• Back to the general model:

• Back to the general model:

$$\dot{X}_t = F^{I_t}(X_t)$$

$$\mathsf{P}(I_{t+s}=j|\mathcal{F}_t, I_t=i) = \lambda Q_{ij}(X_t)s + o(s)$$

・ロト ・聞 ト ・ 思 ト ・ 思 ト

for all $j \neq i$.

• Back to the general model:

$$\dot{X}_t = F^{I_t}(X_t)$$

$$\mathsf{P}(I_{t+s}=j|\mathcal{F}_t,I_t=i)=\lambda Q_{ij}(X_t)s+o(s)$$

イロト イポト イヨト イヨト

3

for all $j \neq i$. • F^1, \ldots, F^m smooth vector fields on \mathbb{R}^d ,

• Back to the general model:

$$\dot{X}_t = F^{I_t}(X_t)$$

$$\mathsf{P}(I_{t+s}=j|\mathcal{F}_t,I_t=i)=\lambda Q_{ij}(X_t)s+o(s)$$

for all $j \neq i$. • F^1, \dots, F^m smooth vector fields on \mathbb{R}^d ,

• $(Q_{ij}(x))$ Markov transition matrix over E (irreducible, aperiodic, and continuous in x)

・ 同 ト ・ ヨ ト ・ ヨ ト

• Back to the general model:

$$\dot{X}_t = F^{I_t}(X_t)$$

$$\mathsf{P}(I_{t+s}=j|\mathcal{F}_t,I_t=i)=\lambda Q_{ij}(X_t)s+o(s)$$

for all $j \neq i$. • F^1, \dots, F^m smooth vector fields on \mathbb{R}^d ,

• $(Q_{ij}(x))$ Markov transition matrix over *E* (irreducible, aperiodic, and continuous in *x*)

(日) (日) (日)

The results here are mainly based on

- Bakhtin & H (Nonlinearity 2012)
- B, Le Borgne, Malrieu, Zitt, (Annales IHP 2015)
- B, H, & Strickler (ECP 2018)
- B & H (2021)

A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure Convergence

- 4 同 6 4 日 6 4 日 6

3

A support theorem

$$co(F)(x) := conv(F^1(x), \ldots, F^m(x)),$$

• S^{\times} is the set of (absolutely continuous) maps $\eta:\mathbb{R}_+\to\mathbb{R}^d$ solutions to

 $\dot{\eta} \in co(F)(\eta), \eta(0) = x$

A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure Convergence

- 4 同 ト - 4 目 ト

э

A support theorem

$$co(F)(x) := conv(F^1(x), \ldots, F^m(x)),$$

• S^{\times} is the set of (absolutely continuous) maps $\eta:\mathbb{R}_+\to\mathbb{R}^d$ solutions to

 $\dot{\eta} \in co(F)(\eta), \eta(0) = x$

• equivalently:

$$\eta \in S^{\mathsf{x}} \Leftrightarrow \dot{\eta}(t) = \sum_{i=1}^{m} u^{i}(t) F^{i}(\eta(t)), \eta(0) = \mathsf{x}$$

with $u^i \in L^{\infty}, u^i \ge 0, \sum u^i(t) = 1.$

A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure Convergence

・ロト ・聞 ト ・ 思 ト ・ 思 ト

Clearly

$$X_0 = x \Rightarrow (X_t) \in S^x,$$

but more can be said:

Michel Benaïm & Tobias Hurth (Neuchâtel)

A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure Convergence

<ロト < 同ト < ヨト < ヨト

3

Clearly

$$X_0 = x \Rightarrow (X_t) \in S^x,$$

but more can be said:

Theorem

If $X_0 = x$, then the support of the law of (X_t) equals S^x .

A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure Convergence

- 4 同 6 4 日 6 4 日 6

э

Invariant probability measures

A probability measure on $M \times E$ is called *invariant* for (Z_t) whenever

$$Law(Z_0) = \mu \Rightarrow Law(Z_t) = \mu$$

 $\Leftrightarrow \mu P_t = \mu$

A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure Convergence

3 N

Invariant probability measures

A probability measure on $M \times E$ is called *invariant* for (Z_t) whenever

$${\sf Law}(Z_0)=\mu\Rightarrow {\sf Law}(Z_t)=\mu$$
 $\Leftrightarrow \mu {\sf P}_t=\mu$

Ergodic measure = extremal invariant probability measure

A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure Convergence

э

<ロト < 同ト < 三ト < 三ト

• Lebesgue measure on $\mathbb{R}^d \times E$: $\lambda(A \times \{i\}) = Vol(A)$

A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure Convergence

・ 同 ト ・ ヨ ト ・ ヨ ト

• Lebesgue measure on $\mathbb{R}^d \times E$: $\lambda(A \times \{i\}) = Vol(A)$

Proposition

If μ is ergodic, it is either absolutely continuous (with respect to Lebesgue measure) or singular.

A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure Convergence

• Lebesgue measure on $\mathbb{R}^d \times E$: $\lambda(A \times \{i\}) = Vol(A)$

Proposition

If μ is ergodic, it is either absolutely continuous (with respect to Lebesgue measure) or singular.

Open problem: Nothing is known in general (in the a-c case) about the regularity of the density.

A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure Convergence

• Lebesgue measure on $\mathbb{R}^d \times E$: $\lambda(A \times \{i\}) = Vol(A)$

Proposition

If μ is ergodic, it is either absolutely continuous (with respect to Lebesgue measure) or singular.

Open problem: Nothing is known in general (in the a-c case) about the regularity of the density.

• except in dimension 1: (Bakhtin, H, and Mattingly, Nonlinearity 2015)

• and for particular 2-dimensional systems (Bakhtin, H, Lawley, and Mattingly, Nonlinearity 2018)

A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure Convergence

・ロト ・聞 ト ・ 思 ト ・ 思 ト

3

• (Ψ_t) the set-valued semi flow induced by $\dot{\eta} \in co(F)(\eta)$:

$$\Psi_t(x) = \{\eta(t): \eta \in S^x\}.$$

A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure Convergence

- 4 同 6 4 日 6 4 日 6

3

Accessible Set

• (Ψ_t) the set-valued semi flow induced by $\dot{\eta} \in co(F)(\eta)$:

$$\Psi_t(x) = \{\eta(t): \eta \in S^x\}.$$

Accessible Set from *x*:

$$\Gamma_x = \overline{\{\Psi_t(x) : t \ge 0\}}$$

A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure Convergence

・ 同 ト ・ ヨ ト ・ ヨ ト

Accessible Set

• (Ψ_t) the set-valued semi flow induced by $\dot{\eta} \in co(F)(\eta)$:

$$\Psi_t(x) = \{\eta(t): \eta \in S^x\}.$$

Accessible Set from x:

$$\Gamma_x = \overline{\{\Psi_t(x) : t \ge 0\}}$$

In words: p is accessible from x if we can reach every neighborhood of p using the flows Φ^1, \ldots, Φ^m

A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure Convergence

(4 同) (ヨ) (ヨ)

Accessible Set

• (Ψ_t) the set-valued semi flow induced by $\dot{\eta} \in co(F)(\eta)$:

$$\Psi_t(x) = \{\eta(t): \eta \in S^x\}.$$

Accessible Set from x:

$$\Gamma_x = \overline{\{\Psi_t(x) : t \ge 0\}}$$

In words: p is accessible from x if we can reach every neighborhood of p using the flows Φ^1, \ldots, Φ^m

Accessible Set: $\Gamma = \bigcap_{x \in M} \Gamma_x$

A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure Convergence

< ロト < 同ト < ヨト < ヨト

Accessible Set

• (Ψ_t) the set-valued semi flow induced by $\dot{\eta} \in co(F)(\eta)$:

$$\Psi_t(x) = \{\eta(t): \eta \in S^x\}.$$

Accessible Set from x:

$$\Gamma_x = \overline{\{\Psi_t(x) : t \ge 0\}}$$

In words: p is accessible from x if we can reach every neighborhood of p using the flows Φ^1, \ldots, Φ^m

Accessible Set: $\Gamma = \bigcap_{x \in M} \Gamma_x$

Accessible Set from A: $\Gamma_A = \bigcap_{x \in A} \Gamma_x$

A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure Convergence

イロト イポト イヨト イヨト

3

Proposition

(i) Γ is closed (possibly empty), connected, and invariant $(\forall t \ge 0, \Psi_t(\Gamma) = \Gamma).$

(ii) Either Γ has empty interior or its interior is dense in Γ .

A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure Convergence

Proposition

(i) Γ is closed (possibly empty), connected, and invariant $(\forall t \ge 0, \Psi_t(\Gamma) = \Gamma).$

(ii) Either Γ has empty interior or its interior is dense in Γ .

Proposition

- (i) $\Gamma \times E \subset supp(\mu)$ for all μ invariant.
- (ii) If Γ has nonempty interior, then $\Gamma \times E = supp(\mu)$ for all μ invariant.
- (iii) If Γ is compact, there exists μ invariant such that $\Gamma \times E = supp(\mu)$.

(iv) If \exists ! invariant probability measure μ , then $\Gamma \times E = supp(\mu)$.

A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure Convergence

э

<ロト < 同ト < 同ト

Figure: Example of accessible set

A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure Convergence

・ロト ・聞ト ・ヨト ・ヨト

Some remarks:

A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure Convergence

イロト イポト イヨト イヨト

э

Some remarks:

• When Γ has empty interior, the inclusion $\Gamma \times E \subset \operatorname{supp}(\mu)$ can be strict!

A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure Convergence

(E)

Some remarks:

- When Γ has empty interior, the inclusion $\Gamma \times E \subset \text{supp}(\mu)$ can be strict!
- When Γ has non-empty interior, $\Gamma \times E = \text{supp}(\mu)$ BUT there may be several invariant probability measures!

A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure Convergence

Some remarks:

• When Γ has empty interior, the inclusion $\Gamma \times E \subset \text{supp}(\mu)$ can be strict!

• When Γ has non-empty interior, $\Gamma \times E = \text{supp}(\mu)$ BUT there may be several invariant probability measures!

Furstenberg (1961) showed that there exists a smooth diffeo on the torus, preserving the area, topologically transitive but not uniquely ergodic.

 \Rightarrow One can construct a flow with the same properties.

A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure Convergence

A B F A B F

Some remarks:

• When Γ has empty interior, the inclusion $\Gamma \times E \subset \text{supp}(\mu)$ can be strict!

• When Γ has non-empty interior, $\Gamma \times E = \text{supp}(\mu)$ BUT there may be several invariant probability measures!

Furstenberg (1961) showed that there exists a smooth diffeo on the torus, preserving the area, topologically transitive but not uniquely ergodic.

 \Rightarrow One can construct a flow with the same properties.

 \Rightarrow Natural question: Under which conditions is there (at most) one invariant probability measure?

A support theorem Invariant probability measures Accessible Set **Uniqueness of invariant measure** Convergence

イロト イポト イヨト イヨト

э

Uniqueness and weak bracket

<u>The Weak Bracket condition</u> For vector fields F, G,

$$[F,G](x) = DG(x)F(x) - DF(x)G(x).$$

A support theorem Invariant probability measures Accessible Set **Uniqueness of invariant measure** Convergence

イロト イポト イヨト イヨト

э

Uniqueness and weak bracket

<u>The Weak Bracket condition</u> For vector fields F, G,

$$[F,G](x) = DG(x)F(x) - DF(x)G(x).$$

Set

$$\mathbf{F}_0 = \{F^1, \dots, F^m\}, \mathbf{F}_{k+1} := \mathbf{F}_k \cup \{[F^i, V] : V \in \mathbf{F}_k\}$$
A support theorem Invariant probability measures Accessible Set **Uniqueness of invariant measure** Convergence

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Uniqueness and weak bracket

<u>The Weak Bracket condition</u> For vector fields F, G,

$$[F,G](x) = DG(x)F(x) - DF(x)G(x).$$

Set

$$\mathbf{F}_0 = \{F^1, \dots, F^m\}, \mathbf{F}_{k+1} := \mathbf{F}_k \cup \{[F^i, V] : V \in \mathbf{F}_k\}$$

Weak Bracket at $x \in M$:

For some $k \ge 1$, \mathbf{F}_k has full rank at x.

A support theorem Invariant probability measures Accessible Set **Uniqueness of invariant measure** Convergence

Uniqueness

Theorem

Suppose $\exists x \in \Gamma$ at which the weak bracket condition holds. Then there is at most one invariant probability measure μ .

If μ exists, it is absolutely continuous with respect to Lebesgue measure and $\forall f \in L^1(\mu), z \in M \times E$,

$$\mathbb{P}_{z}\left(\lim_{t\to\infty}\frac{1}{t}\int_{0}^{t}f(Z_{s})ds=\mu(f)\right)=1.$$

A support theorem Invariant probability measures Accessible Set **Uniqueness of invariant measure** Convergence

- 4 同 6 4 日 6 4 日 6

Uniqueness

Theorem

Suppose $\exists x \in \Gamma$ at which the weak bracket condition holds. Then there is at most one invariant probability measure μ .

If μ exists, it is absolutely continuous with respect to Lebesgue measure and $\forall f \in L^1(\mu), z \in M \times E$,

$$\mathbb{P}_{z}\left(\lim_{t\to\infty}\frac{1}{t}\int_{0}^{t}f(Z_{s})ds=\mu(f)\right)=1.$$

The existence is not guaranteed in general, but is ok when M is compact or under the existence of a suitable Lyapunov function

A support theorem Invariant probability measures Accessible Set **Uniqueness of invariant measure** Convergence

・ロト ・聞 ト ・ 思 ト ・ 思 ト

• Weak Bracket \Rightarrow convergence in law of $(Z_t)!$

Introduction Motivating Examples Some Math Application to Lotka Volterra A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure Convergence

• Weak Bracket \Rightarrow convergence in law of (Z_t) ! Indeed,

$$M = S^1 = \mathbb{R}/\mathbb{Z}, \Phi^1_t(x) = (x+t) \mod 1.$$

Figure: designed by freepick

・ロト ・聞 ト ・ 思 ト ・ 思 ト

э

Introduction Motivating Examples Some Math Application to Lotka Volterra A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure Convergence

• Weak Bracket \Rightarrow convergence in law of (Z_t) ! Indeed,

$$M = S^1 = \mathbb{R}/\mathbb{Z}, \Phi^1_t(x) = (x+t) \mod 1.$$

Figure: designed by freepick

・ 同 ト ・ ヨ ト ・ ヨ ト

Here $\mu = \text{Lebesgue}$, but $Law(Z_t) = \delta_{(\Phi_t(x),1)} \nrightarrow \mu$

Convergence and strong bracket

The Strong Bracket condition

$$\mathbf{G}_0 = \{F^i - F^j : i, j = 1, \dots m\},\$$

 $\mathbf{G}_{k+1} = \mathbf{G}_k \cup \{[F^i, V] : V \in \mathbf{G}_k\}$

∃ ► < ∃ ►</p>

< 17 > <

э

Introduction Motivating Examples Some Math Application to Lotka Volterra Convergence A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure

Convergence and strong bracket

The Strong Bracket condition

$$\mathbf{G}_0 = \{F^i - F^j : i, j = 1, \dots m\},\$$

 $\mathbf{G}_{k+1} = \mathbf{G}_k \cup \{[F^i, V] : V \in \mathbf{G}_k\}$

Strong Bracket at $x \in M$:

For some $k \ge 1, \mathbf{G}_k$ has full rank at x.

∃ ► < ∃ ►</p>

• We assume here that there exists a convenient Lyapunov function controlling the process at infinity, i.e.:

Introduction Motivating Examples Some Math	A support theorem Invariant probability measures Accessible Set Uninueness of invariant measure
Application to Lotka Volterra	Uniqueness of invariant measure Convergence

- \bullet We assume here that there exists a convenient Lyapunov function controlling the process at infinity, i.e.:
- $-V: M imes E
 ightarrow \mathbb{R}_+$, proper,

$$-P_TV \le \rho V + K, \ 0 \le \rho < 1, K \ge 0, T > 0.$$

Introduction	A support theorem
Motivating Examples	Invariant probability measures
Some Math	Accessible Set
Application to Lotka Volterra	Uniqueness of invariant measure
Application to Lotka Volteria	Convergence

- We assume here that there exists a convenient Lyapunov function controlling the process at infinity, i.e.:
- $-V: M imes E
 ightarrow \mathbb{R}_+$, proper,
- $P_T V \leq \rho V + K, \ 0 \leq \rho < 1, K \geq 0, \ T > 0.$
- If M is compact, $V \equiv 1$ always works!

Introduction Motivating Examples Some Math Application to Lotka Volterra	A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure Convergence
--	---

- We assume here that there exists a convenient Lyapunov function controlling the process at infinity, i.e.:
- $-V: M imes E
 ightarrow \mathbb{R}_+,$ proper,

$$-P_TV \le \rho V + K, \ 0 \le \rho < 1, K \ge 0, T > 0.$$

• If M is compact, $V \equiv 1$ always works!

Theorem

Suppose $\exists p \in \Gamma$ at which the strong bracket condition holds. Then $\exists C, \kappa > 0$ such that for all f measurable

$$|P_t f(z) - \mu(f)| \le C e^{-\kappa t} (1 + V(z)) ||f||_V.$$

Here $||f||_V = \sup \frac{|f(z)|}{1+V(z)}$.

Introduction A supp Motivating Examples Access Some Math Application to Lotka Volterra Conver

A support theorem Invariant probability measures Accessible Set Uniqueness of invariant measure Convergence

An alternative condition (sometimes very useful):

Theorem

Suppose $\exists p \in \Gamma$ at which the weak bracket condition holds and $\exists q \in \Gamma$ at which a barycentric combination of the F^i vanishes. Then $\exists C, \kappa > 0$ such that for all f measurable

$$|P_t f(z) - \mu(f)| \le C e^{-\kappa t} (1 + V(z)) ||f||_V.$$

Application to LV

 $E = \{1, 2\}, M := \mathbb{R}_+ \times \mathbb{R}_+.$ F^1, F^2 two competitive LV favorable to x

$$F^{i}(x,y) = \begin{cases} \alpha_{i}x(1-a_{i}x-b_{i}y) = xU^{i}(x,y) \\ \beta_{i}y(1-c_{i}x-d_{i}y) = yV^{i}(x,y) \end{cases}$$

臣▶ 唐

Invasion rates

• On the "face" $\{y = 0\}$ the system is a 1D PDMP obtained by switching between the ode's

$$\dot{x} = xU^{i}(x,0) = x\alpha_{i}(1-a_{i}x), i = 1, 2.$$

▲御▶ ▲恵▶ ▲恵▶

3

Invasion rates

• On the "face" $\{y = 0\}$ the system is a 1D PDMP obtained by switching between the ode's

$$\dot{x} = xU^{i}(x,0) = x\alpha_{i}(1-a_{i}x), i = 1, 2.$$

A B + A B +

э

• The process eventually enters the interval $\left[\frac{1}{a_1}, \frac{1}{a_2}\right]$.

Invasion rates

• On the "face" $\{y = 0\}$ the system is a 1D PDMP obtained by switching between the ode's

$$\dot{x}=xU^{i}(x,0)=x\alpha_{i}(1-a_{i}x), i=1,2.$$

- The process eventually enters the interval $\left[\frac{1}{a_1}, \frac{1}{a_2}\right]$.
- Accessibility + Bracket condition $\Rightarrow \exists !$ invariant probability measure ν on $\mathbb{R}^*_+ \times E$ for this system supported by $[\frac{1}{a_1}, \frac{1}{a_2}] \times E$.

Invasion rates

• On the "face" $\{y = 0\}$ the system is a 1D PDMP obtained by switching between the ode's

$$\dot{x} = xU^i(x,0) = x\alpha_i(1-a_ix), i = 1,2.$$

- The process eventually enters the interval $\left[\frac{1}{a_1}, \frac{1}{a_2}\right]$.
- Accessibility + Bracket condition $\Rightarrow \exists !$ invariant probability measure ν on $\mathbb{R}^*_+ \times E$ for this system supported by $[\frac{1}{a_1}, \frac{1}{a_2}] \times E$. Invasion rate of y:

$$\Lambda_y = \int V^i(x,0)\nu(dxdi).$$

A persistence theorem

.

• We suppose that $\Lambda_x, \Lambda_y > 0$.

$$M_0 = \mathbb{R}^*_+ \times \mathbb{R}^*_+ = M \setminus (\{x = 0\} \cup \{y = 0\})$$

▲御▶ ▲恵▶ ▲恵▶

A persistence theorem

• We suppose that $\Lambda_x, \Lambda_y > 0$.

$$M_0 = \mathbb{R}^*_+ \times \mathbb{R}^*_+ = M \setminus (\{x = 0\} \cup \{y = 0\})$$

Persistence Theory (not the subject today) \Rightarrow

For the system restricted to $M_0 \times E$ (not $M \times E$!) the map

$$V(x, y, i) = \frac{1}{x^{\theta}} + \frac{1}{y^{\theta}}$$

is a Lyapunov function for some $\theta > 0$.

• Combined with the results presented here, this leads to

・ロト ・伊ト ・モト ・モト

• Combined with the results presented here, this leads to

Theorem (B, Lobry 16 + B, H, Strickler 19)

There exists a unique invariant probability measure Π on $M_0 \times E$, absolutely continuous, and $\forall z \in M_0 \times E$

$$\|\mathbb{P}_z(Z_t\in\cdot)-\Pi(\cdot)\|\leq C(1+x^{- heta}+y^{- heta})e^{-\kappa t}$$

with $C, \kappa > 0$. Moreover,

$$supp(\Pi) = \Gamma \times E$$

and Γ is simply connected.

Figure: The set Γ

∢ 臣 ≯

< □ > < 同 > <