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Controlled piecewise deterministic Markov processes Introduction

Introduction

Davis (80’s)
General class of non-diffusion stochastic hybrid models:

Family of processes with discrete/continuous state space and
deterministic/stochastic jumps.

Applications
Engineering systems, biology, operations research, management
science, economics, dependability and safety, . . .
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Controlled piecewise deterministic Markov processes Parameters of the model

Parameters of the model
I the state space: X open subset of Rd (boundary ∂X).
I the flow: φ(x , t) : Rd × R→ Rd satisfying
φ(x , t + s) = φ(φ(x , s), t) for all x ∈ Rd and (t, s) ∈ R2.
→ active boundary:
∆ = {z ∈ ∂X : z = φ(x , t) for some x ∈ X and t ∈ R∗+} .
For x ∈ X .= X ∪∆,

t∗(x) = inf{t ∈ R+ : φ(x , t) ∈ ∆}.

The flow is not controlled.
I A is the action space, assumed to be a Borel space. The set

of feasible actions in state x ∈ X is A(x) ⊂ A.
The set of feasible pairs

K = {(x , a) ∈ X× A : a ∈ A(x)}
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Controlled piecewise deterministic Markov processes Parameters of the model

Parameters of the model

I The jumps intensity λ is a R+-valued measurable function
defined on K.

I The stochastic kernel Q on X given K satisfies
Q(X \ {x}|x , a) = 1 for any (x , a) ∈ K.
In state x and choosing the action a ∈ A(x), the distribution
of the next state is given by Q(·|x , a) = 1 at a time of jump.
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Controlled piecewise deterministic Markov processes Construction of the controlled process

The canonical space

Ω =
( ∞⋃
n=1

Ωn
)⋃(

X× (R∗+ × X)∞
)

with Ωn = X× (R∗+ × X)n × ({∞} × {x∞})∞.

Interpretation of Ω:
Consider ω = (x0, θ1, x1, θ2, x2, . . .) ∈ Ω
I x0 ∈ X is the initial state.
I Given n ≥ 0, if xn ∈ X then

I either 0 < θn+1 <∞, and we interpret θn+1 as the sojourn
time in state xn ∈ X, while xn+1 ∈ X is the post-jump location
of the process;

I or θn+1 =∞; this means that the system has been absorbed
by xn. In this case we set xm = x∞ and θm =∞ for all m > n.
Such sample paths belong to Ωn.
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Controlled piecewise deterministic Markov processes Construction of the controlled process

Construction of the controlled process

Introduce the mappings Xn : Ω→ X∞ = X∪ {x∞} by Xn(ω) = xn
and Θn : Ω→ R∗+ by Θn(ω) = θn; Θ0(ω) = 0 where

ω = (x0, θ1, x1, θ2, x2, . . .) ∈ Ω.

In addition Tn(ω) =
n∑

i=1
Θi(ω) =

n∑
i=1

θi with T∞(ω) = lim
n→∞

Tn(ω).

Hn is the set of path up to n.
Hn = (X0,Θ1,X1, . . . ,Θn,Xn) is the history of the process up to n.
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Controlled piecewise deterministic Markov processes Construction of the controlled process

Construction of the process

The controlled process
{
ξt
}
t∈R+

ξt(ω) =
{
φ(Xn, t − Tn) if Tn ≤ t < Tn+1 for n ∈ N;
x∞, if T∞ ≤ t.

{Ft}t∈R+ denote the filtration generated by the process
{
ξt
}
t∈R+

.

Admissible control strategy u = (πn)n∈N
It is a sequence of stochastic kernels on A given Hn × R∗+
satisfying: πn(da|hn, t) = 1 for t ∈]0, t∗(xn)]∩R∗+, where
hn = (x0, θ1, x1, . . . θn, xn) ∈ Hn.

The set of admissible control strategies is denoted by U .
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Controlled piecewise deterministic Markov processes Construction of the controlled process

Admissible strategies and conditional distribution
Consider an admissible strategy u ∈ U and an initial state x0 ∈ X,
there exists Pu

x0 on (Ω,F) [Jacod, 75, Multivariate point processes]
satisfying

Pu
x0

(
(Θn+1,Xn+1) = (+∞, x∞)

∣∣FTn

)

=


1 if Xn = x∞,
e−Λu

n(Hn,+∞) if Xn ∈ X and t∗(Xn) = +∞,
0 otherwise,

where Λu
n(Hn, t) is the rate of jumps averaged over the action

Λu
n(Hn, t) =

∫
]0,t]

∫
A
λ(φ(Xn, s), a)πn(da|Hn, s)ds

at step n.
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Controlled piecewise deterministic Markov processes Construction of the controlled process

Admissible strategies and conditional distribution

For Γ2 ∈ B(X),

Pu
x0

(
Θn+1 = t∗(Xn);Xn+1 ∈ Γ2

∣∣FTn

)
=
{
Qu
n (Γ2|Hn)e−Λu

n(Hn,t∗(Xn)) if Xn ∈ X and t∗(Xn) < +∞,
0 otherwise.

where Qu
n (dx |Hn) is the distribution of the state after a

deterministic jump

Qu
n (dx |Hn) =

∫
A
Q(dx |φ(Xn, t∗(Xn)), a)πn(da|Hn, t∗(Xn)).
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Controlled piecewise deterministic Markov processes Construction of the controlled process

Admissible strategies and conditional distribution
For Γ1 ∈ B(R∗+), Γ2 ∈ B(X)

Pu
x0

(
Θn+1 ∈ Γ1;Xn+1 ∈ Γ2

∣∣FTn

)
=


∫

]0,t∗(Xn)[∩Γ1
Qu
n (Γ2|Hn, t)λun(Hn, t)e−Λu

n(Hn,t)dt if Xn ∈ X

0 otherwise.

where Qu
n is the distribution of the state after a stochastic jump

Qu
n (dx |hn, t)

= 1
λun(hn, t)

∫
A
Q(dx |φ(xn, t), a)λ(φ(xn, t), a)πn(da|hn, t)

with λun(hn, t) being the corresponding intensity of jumps

λun(hn, t) =
∫

A
λ(φ(xn, t), a)πn(da|hn, t).
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Optimization problems Unconstrained and constrained problems

Unconstrained and constrained problems
Cost functions(
Ck
)
k∈{0,1,...,p} real-valued mapping defined on K.

The associated infinite-horizon discounted criteria corresponding to
u ∈ U are given for any k ∈ {0, 1, . . . , p} by

Vk(u, x0) = Eu
x0

[ ∫
]0,+∞[

e−αs
∫

A(ξs)
Ck(ξs , a)π(da|s)ds

]

+ Eu
x0

[ ∫
]0,+∞[

e−αs I{ξs−∈∆}

∫
A(ξs−)

Ck(ξs−, a)π(da|s)µ(ds)
]
.

with
π(da|t) =

∑
n∈N

I{Tn<t≤Tn+1}πn(da|Hn, t − Tn)

and
µ(ds) is the point process associated to {Tn}n∈N
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Optimization problems Unconstrained and constrained problems

Unconstrained and constrained problems
I The optimization problem without constraint consists in

minimizing the performance criterion

inf
u∈U
V0(u, x0).

I The optimization problem with p constraints consists in
minimizing the performance criterion

inf
u∈U f

V0(u, x0)

where U f is the set of feasible controls, that is, U f and such
that the constraint criteria

Vk(u, x0) ≤ Bk

are satisfied for any k ∈ {1, . . . , p}, where (Bk)k∈{1,...,p} are
real numbers representing the constraint bounds.
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Optimization problems Unconstrained and constrained problems

Different classes of strategies

I stationary, if u = (πn)n∈N with πn(da|hn, t) = π(da|φ(xn, t))
for some stochastic kernel π on A given X.

I deterministic stationary, if πn(·|hn, t) = δϕs(φ(xn,t))(·), where
ϕs : X→ A is a measurable mapping satisfying ϕs(y) ∈ A(y)
for any y ∈ X.
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Optimization problems Hypotheses and preliminary result

Hypotheses
Assumption A. There are constants K ≥ 0, ε1 > 0 and ε2 ∈ [0, 1[ such that
(A1) For any (x , a) ∈ Kg , λ(x , a) ≤ K
(A2) inf

(z,b)∈∆×A
Q(Aε1 |z, b) ≥ 1− ε2, with Aε1 = {x ∈ X : t∗(x) > ε1}.

Assumption B.
(B1) The set A(y) is compact for every y ∈ X.
(B2) The kernel Q is weakly continuous.
(B3) The function λ is continuous on K.
(B4) The flow φ is continuous on R+ × Rp .
(B5) The function t∗ is continuous on X.

Assumption C.
(C1) The multifunction Ψ from X to A defined by Ψ(x) = A(x) is upper semiconti-

nous.
(C2) The cost function Cg

0 (respectively, C i
0) is bounded and lower semicontinuous

on Kg (respectively, Ki ).
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Optimization problems Hypotheses and preliminary result

Lemma
Suppose Assumption A is satisfied. Then there exists M <∞ such
that, for any control strategy u ∈ U and for any x0 ∈ X

Eu
x0

[ ∑
n∈N∗

e−αTn
]
≤ M and Pu

x0(T∞ < +∞) = 0.
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The unconstrained problem and the DP approach

There are two approaches to deal with such problems:
• the associated discrete-stage Markov decision model:

I A. Almudevar. A dynamic programming algorithm for the optimal control
of piecewise deterministic Markov processes, 2001.

I O.L.V Costa and F. Dufour. Continuous average control of piecewise
deterministic Markov processes, 2013.

I M.H.A. Davis. Control of piecewise-deterministic processes via
discrete-time dynamic programming, 1986.

I L. Forwick, M. Schal, and M. Schmitz. Piecewise deterministic Markov
control processes with feedback controls and unbounded costs, 2004.

I M. Schal. On piecewise deterministic Markov control processes: control of
jumps and of risk processes in insurance, 1998.

I A.A. Yushkevich. On reducing a jump controllable Markov model to a
model with discrete time, 1980.

• the infinitesimal approach (HJB equation):
I M.H.A. Davis. Markov models and optimization, volume 49 of

Monographs on Statistics and Applied Probability, 1993.
I M.A.H. Dempster and J.J. Ye. Necessary and sufficient optimality

conditions for control of piecewise deterministic processes, 1992.
I M.A.H. Dempster and J.J. Ye. Generalized Bellman-Hamilton-Jacob

optimality conditions for a control problem with boundary conditions,
1996.

I A.A. Yushkevich. Bellman inequalities in Markov decision deterministic
drift processes. Stochastics, 1987
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The unconstrained problem and the DP approach

Notation:
I A(X) is the set of functions g ∈ B(X) such that for any

x ∈ X, the function g(φ(x , ·)) is absolutely continuous on
[0, t∗(x)]∩R+.

I Let g ∈ A(X), there exists a real-valued measurable function
Xg defined on X satisfying for any t ∈ [0, t∗(x)[

g(φ(x , t)) = g(x) +
∫

[0,t]
Xg(φ(x , s))ds.

I q(dy |x , a) .= λ(x , a)
[
Q(dy |x , a)− δx (dy)

]
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The unconstrained problem and the DP approach

Theorem
Suppose assumptions A, B and C hold. Then there exist
W ∈ A(X) and XW ∈ B(X) satisfying for any x ∈ X,

−αW (x) + XW (x) + inf
a∈A(x)

{
C0(x , a) + qW (x , a)

}
= 0,

and for any z ∈ ∆

W (z) = inf
b∈A(z)

{
C0(z , b) + QW (z , b)

}
.

Moreover, for any x ∈ X

W (x) = inf
u∈U
V0(u, x).

There exists an optimal stationary deterministic strategy ϕ̂
satisfying ϕ̂(y) ∈ A(y) for any y ∈ X
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The constrained problem and the linear programming approach

The constrained problem and the linear programming
approach

The method has been extensively studied in the literature
• Continuous and discrete time MDP:

I Eitan Altman. Constrained Markov decision processes, 1999.
I Vivek S. Borkar. A Convex Analytic Approach to Markov

Decision Processes, 1988.
I Vivek S. Borkar. Convex analytic methods in Markov decision

processes, 2002.
I Alexey B. Piunovskiy. Optimal control of random sequences in

problems with constraints, 1997.
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The constrained problem and the linear programming approach

Occupation measure
For any admissible control strategy u ∈ U , the occupation measure
ηu ∈M(K) associated with u is defined as follows

ηu(Γ) =Eu
x0

[∫
Γ

∫
]0,∞[

e−αsδξs (dx)π(da|s)ds
]

+ Eu
x0

[∫
Γ

∑
n∈N∗

e−αTn I{ξTn−∈∆}δξTn− (dx)π(da|Tn)
]
.

for any Γ ∈ B(K). The infinite-horizon discounted criteria can be
rewritten as

Vj (u, x0) =Eu
x0

[∫
]0,+∞[

e−αs
∫

A(ξs )
Cj (ξs , a)π(da|s)ds

]
+ Eu

x0

[∫
]0,+∞[

e−αs I{ξs−∈∆}

∫
A(ξs−)

Cj (ξs−, a)γ(da|s)µ(ds)
]

=
∫

K
Cj (x , a)ηu(dx , da) .= ηu(Cj )
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The constrained problem and the linear programming approach

Linear programming approach
The constrained linear program is defined as

inf
η∈M

η(C0)

where M is the set of measures η inM(K) satisfying for any
(W ,XW ) ∈ A(X)× B(X)∫

X

[
IX(x)

[
αW (x)−XW (x)

]
+ I∆(x)W (x)

]
η̂(dx)

= W (x0) +
∫

K

[
IX(x)qW (x , a) + I∆(x)QW (z, b)

]
η(dx , da).

where η̂ denotes the marginal of η w.r.t. to X and also the
constraints

η(Cj) ≤ Bj

for j ≥ 1.
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The constrained problem and the linear programming approach

Linear programming approach

Theorem
Suppose Assumption A holds and the cost functions Cj are
bounded from below for any j ∈ Np. Then the values of the
constrained control problem and the linear program are equivalent:

inf
η∈M

η(C0) = inf
u∈U f

V0(u, x0).
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Thank you for your attention.
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