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0.- Introduction Table of Content

Comments: MDPs = Markov decision processes . . .

• Notation. . . , Instantaneous actions, un-discounted costs, infinite horizon.

• Meaning of ‘impulse MDPs’, the impulse = instantaneous change of
state. (inventory model)

• Meaning of ‘switching MDPs’, the switching = instantaneous change
dynamic. (production/maintenance model)

• General ‘MDPs with interventions’, the intervention = instantaneous
change of some fundamental part the model itself.

• (0) read state xt , (1) chose control at , (2) apply dynamics xt+1,
and then iterate for t = 0, 1, . . ., also referred to as ‘sequential decision’

• Everything is more visible in continuous time, but we begin with discrete
time models.
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1. Discrete Time Model Abstract Model

Discrete Time Model (MDP)

• Markov decision process: M = (X ,A,K,Q, c , α), X (state), A (action),
K = {(x , a) ∈ X × A : x ∈ X , a ∈ A(x)} measurable, w/meas. selectors F;
System dynamics = transition kernel Q : B(X )×K → [0, 1],

Qu(x , a) =

∫
X
u(y)Q(dy | x , a), ∀(x , a) ∈ K.

from u ∈M+(X ) into Qu ∈M+
(K).

• Sequential Control: Given initial state x0 ∈ X = H0, choose an action
a0 ∈ A(x0), a policy ν = {νt} ∈ Π (transition probability measures on A
given Ht), such that νt(A(xt) | ht) = 1 for all ht ∈ Ht = Kt × X and
t = 0, 1, . . ., with Ht = Kt × X (=history up to time t) and H∞ = K∞,
with ht = (x0, a0, . . . , xt−1, at−1, xt), ω = (x0, a0, . . . , xt , at , . . .) ∈ H∞.
• Expected discounted cost: c ≥ 0 running cost, 0 ≤ α ≤ 1 discount

J(x , ν) = Eνx
{ ∞∑

t=0

c(xt , at)
t−1∏
j=0

α(xj , aj)

}
, J∗(x) = inf

ν
J(x , ν).
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1. Discrete Time Model Abstract Model

Comments 1:

• Under these assumptions, a probability Pνx on H∞ is constructed.

• There are other ‘equivalent’ ways of presenting this model, e.g.,

xt+1 = F (xt , at ,wt), at = νt(w−1, x0, a0,w0, . . . , xt−1, at−1,wt−1, xt),

where {wt} is the ‘disturbance sequence’ (or IID noise), a0 = ν0(w−1, x0).

• A typical/classic discounted cost looks like

J(x , ν) = Eνx
{ ∞∑

t=0

c(xt , at)α
t

}
, 0 < α < 1,

our point is variable discount factor α(x , a)
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1. Discrete Time Model Abstract Model

Assumption MDP: (A1)

(1) Running cost c ∈ L+(K) (lsc), x 7→ infa∈A(x) c(x , a) is bounded.
(2) Discount factor α ∈ L+(K) (by definition, α takes values in [0, 1]).
(3) Q is weakly continuous, i.e, u ∈ Cb(X ) implies Qu ∈ Cb(K).
(4) x 7→ A(x) is compact-valued and upper semicontinuous.
(5) The optimal discounted cost J∗(x) is finite for every x ∈ X .

Note: (1) = ∃ f ∈ F such that supx∈X c(x , f (x)) <∞, but c may be
unbounded. Later, we show examples of (5) satisfied in term of data. Also
(2)–(4) are standard. There are only a few references with variable
discount, always 0 < ε ≤ α(x , a) ≤ 1− ε. Main interest, why?
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1. Discrete Time Model Abstract Model

Dynamic Programming and Comments 2:

Given u ∈M+(X ) define Tu(x) = infa∈A(x)

{
c(x , a) + α(x , a)Qu(x , a)

}
,

∀x ∈ X , could be +∞. If Tu(x) = c(x , f (x)) + α(x , f (x))Qu(x , f (x)),
∀x ∈ X with f ∈ F, then T admits a measurable selector at u.
The dynamic programming equation (DPE)

u(x) = Tu(x) for each x ∈ X , (1)

and look for solution u ∈M+(X ).

• First, need to relate the DPE (1) with the optimal cost J∗(x).

• Need ‘general Assumptions’ to accommodate instantaneous controls
. . . Hybrid models.

• As seen later, variable discount factor is key element!
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1. Discrete Time Model Value Iteration Procedure

Value Iteration Procedure (VIP)

Under Assumption MDP

• If u ∈ L+(X ) then Tu ∈ L+
(X ) and T has a measurable selector at u,

and if u ∈ L+
b (X ) then Tu ∈ L+

b (X ).
• VIP: Define vk+1 = Tvk for k ≥ 0 beginning with v0 = 0. Then, {vk}
converges pointwise and monotonically to some v∗ ∈ L+(X ) with v∗ ≤ J∗.
• The limiting function v∗ is a solution of the DPE (1).

Theorem
Suppose Assumption MDP and let v∗ ∈ L+(X ) be the limiting function as
above. Then the optimal discounted cost J∗ equals v∗, and it is the
minimal solution in L+(X ) of the DPE (1). Moreover, any measurable
selector of T at J∗ is an optimal deterministic stationary policy ν∗ (i.e.,
∃ f ∗ ∈ F | ν∗t (B | ht) = δf ∗(xt)(B), ∀B ∈ (B(X ), ht ∈ Ht , t = 0, 1, . . .).
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1. Discrete Time Model Value Iteration Procedure

Comments 3:

• Theorem gives satisfaction from the DPE view point.

• Need to translate the ‘abstract’ condition (5) (i.e., J∗(x) <∞ ∀x ∈ X )
in Assumption (A1) to ‘something’ on the data of the model . . .

• Assumptions on the variable discount α(x , a) . . .

• Optimal cost J∗ = v∗ ∈ L+(X ), but we would like ∈ L+
b (X )

Definition: f ∈ F, C ∈ B(X ) is small if ∃ t ∈ N and a nontrivial measure µ
on (X ,B(X )) with P f

x {xt ∈ B} ≥ µ(B) for all B ∈ B(X ) and x ∈ C . We
will also say that C is µ-small for f ∈ F at stage (or time) t.

• For ‘small sets’ see Meyn and Tweedie’s book (CUP 2009), this is
‘similar/related’ to some ‘ergodic’ conditions . . .
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1. Discrete Time Model Variable Discount Assumption

Variable Discount Assumption: (A2) [ | = such that]

For f ∈ F and 0 ≤ β ≤ 1 set L(U)f ,β = {x ∈ X : α(x , f (x)) ≤ (>)β}.
(a) ∃ f ∈ F | supx∈X c(x , f (x)) = c <∞, and | ∃ 0 ≤ β < 1 and µ
measure on (X ,B(X )) | µ(Lf ,β) > 0, so that Uf ,β is µ-small for f at t,
i.e., ∃ t | P f

x {xt ∈ B} ≥ µ(B), ∀B ∈ B(X ), x ∈ Uf ,β.
(b) ∃ 0 < δ < 1 | ∀(x , a) ∈ K : α(x , a) ≥ 1− δ ⇒ c(x , a) ≥ δ, i.e., roughly
speaking, discount factors close to one yield a running positive cost.

Proposition
(i) If (A2)(a) holds then supx∈X J(x , f ) <∞, i.e., (A1)(5) is satisfied.
(ii) Under (A2)(b), if x ∈ X and ν ∈ Π are such that J(x , ν) <∞ then∏k

i=0 α(xi , ai ) converges to 0, with Pνx -probability one as k →∞.

Theorem
If (A1) and (A2) hold then J∗ ∈ L+

b (X ). Furthermore it is the unique
solution in L+

b (X ) of the DPE (1).
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1. Discrete Time Model Variable Discount Assumption

Comments 4 - This Model includes:

• Considering ‘instantaneous actions’.

• Such as impulses, switchings, hybrid models.

• Stopping the dynamics at τ .

• Conditional stopping actions, like a.

• Variable discount factor (its role!).

• Absorption actions a∂ and absorption states ∂.

• Markov Decision Processes/DPE with Stopping or VI.

• Markov Decision Processes/DPE with Absorption.
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1. Discrete Time Model Switching MDP with Stopping

Switching MDP with Stopping

Switching is an instantaneous change of regime or mode or configuration
of the dynamics (better known in continuous time).
In our context, there are N = {i = 1, . . . ,N} controlled Markov chains, all
taking values in Y and with common action space V ; both Y and V are
Borel spaces. Transition kernels Qi (B | y , a), ∀B ∈ B(Y ), ∀(y , a) ∈ Y ×A.

Controlled switching model with stopping: X = (Y ×N)∪{∂} is the State
space, where ∂ is an isolated absorption state. In the pair (y , k) ∈ X ,
y ∈ Y is the ‘fast’ variable (main state of the system) and k ∈ N is the
‘slow’ variable indicating the current regime/mode/configuration.
Action space = V ∪ {a∂} ∪ N, the latter being N + 1 isolated points. The
set of available actions are

A(y , k) = Ã(y) ∪ {1, . . . , k − 1, k + 1, . . . ,N}, Ã(y) ⊂ V ∪ {a∂}

for a state (y , k) ∈ Y × N and A(∂) = {a∂}, i.e., a∂ is an
absorption(-stopping) action.
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1. Discrete Time Model Dynamics of Switching MDP

Dynamics of Switching MDP with Stopping

Starting from a state (y , k) ∈ X we have

Q(dz × dm | (y , k), a) =


Qk(dz × dm | y , a) if a ∈ V ,

δ(y ,a)(dz × dm) if 1 ≤ a ≤ N, a 6= k ,

δ∂(dz) if a = a∂ ,

note that Q({∂}|(y , k), a) = 0 for any (y , k) ∈ Y × N and a ∈ A(y , k),
while Q({∂}|∂, a∂) = 1.
A typical or common situation is

Q(dz × dm | (y , k), a) = Qk(dz | y , a) δ{k}(dm) if a ∈ V ,

i.e., when modes remain constant except when a switching is applied.
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1. Discrete Time Model Switching Costs

Switching Costs

Running costs `i : Y × V → R+ under each of the N controlled Markov
chains; switching cost l : N × N 7→ R+ and terminal cost `0 : Y → R+.
Thus, c(∂, a∂) = 0 and

c(y , k , a) = `k(y , a)1V (a) + `0(y)1{a∂}(a) + l(k , a)1{1,...,N}(a),

represents cost for state (y , k) ∈ Y × N and action a ∈ V ∪ {a∂} ∪ N.

Discount factor is α(·, a∂) = 0 and

α(y , k , a) = %k(y , a)1V (a) + 1{1,...,N}(a), ∀(y , k) ∈ Y × N.

where %k : Y × V → (0, 1), for 1 ≤ k ≤ N, are the discount functions of
each of the N controlled Markov chains.

All, under the assumptions (A1) and (A2).
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1. Discrete Time Model DPE with Switching and Stopping

DPE with Switching and Stopping

u : Y × N → R+ solves the dynamic programming equation (DPE) if for
(y , k) ∈ Y × N we have

u(y , k) = min
{
Mu(y , k),Hu(y , k), `0(y)

}
,

where the operators H and M are defined as

Hu(y , k) := inf
a∈A(y ,k)∩V

{
`k(y , a) + %k(y)

∫
X
u(z , k)Qk(dz |y , a)

}
,

Mu(y , k) := min
a∈A(y ,k)∩(Nr{k})

{
l(k, a) + u(y , a)

}
,

we put u(∂) = 0.

Typical example: pollution accumulation problem.
• Joint work with H. Jasso-Fuentes and T. Prieto-Rumeau, Discrete-time
Control with Non-constant Discount Factor Mathematical Methods of
Operations Research, 2020, 92, 377–399. (and several others 2017 – 2020)
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Impulse Control - Continuous Time Models

Impulse/Switching/Hybrid Control - Comments 6:

• Contrast with continuous time models.

• Impulse versus Switching control.

• Hybrid control: Example ‘wait for a signal’ constraint.

• Back to discrete time models . . .

• Specifying the model in between two consecutive ‘ticks of a clock’.

• Back to the ‘black box’ . . .
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Impulse Control - Continuous Time Models

Continuous Time Models

Impulse Control ν = {θi , ξi : i = 1, 2, . . .} produces (xνt , y
ν
t ).

yt = ‘signal clock’, i.e., yt = ‘time since last signal’ or ‘waiting time’
{(x0

t , y
0
t ) : t ≥ 0} is the uncontrolled Markov evolution (of the state) and

{(x it , y it ) : t ≥ θi} denotes the Markov evolution after the i-impulse, i.e.,
only the first i impulses are applied and the Markov process restart anew
at time θi <∞ with initial condition (x iθi , y

i
θi

) = (ξi , 0), since y i−1
θi

= 0.

Also the sequence {τ ik : k ≥ 1} of signals after θi is given by the functional
τ ik+1 = inf{t > τ ik : y it = 0}, beginning with τ i0 = θi <∞.
Control is allowed only when the signal arrives
Costs: running, impulse, and optimal u(x , y) = infν{Jx ,y}, with

Jx ,y (ν) = Eνx ,y
{∫ ∞

0
e−αt f (xt , yt)dt +

∞∑
i=0

e−αθi c(x i−1
θi

, ξi )
}
,

x i−1
θi

is the value of the process just before the impulse.
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Impulse Control - Continuous Time Models Assumption (ACT)

Assumption (ACT)

E (locally) compact Polish space, (Ω,F, xt , yt ,Pxy ) Markov(-Feller)
process on Ω = D(R+,E × R+), filtration F = {Ft : t ≥ 0}, (xt , yt)
canonical process with values in E × R+, infinitesimal generator
Axy = Ax + Ay .
(a) xt is a Markov process by itself (reduced state), with a C0-semigroup

Φx(t) (i.e., Φx(t)C0(E ) ⊂ C0(E ), ∀t ≥ 0), and infinitesimal generator Ax

with domain D(Ax) ⊂ C0(E ).
(b) Ayϕ(x , y) = ∂yϕ(x , y) +λ(x , y)[ϕ(x , 0)−ϕ(x , y)] is the infinitesimal

generator of the signal process yt , λ ≥ 0 and λ ∈ Cb(E × R+), i.e., it has
jumps to zero at times τ1, . . . , τn →∞ and yt = t − τn for τn ≤ t < τn+1.
(c) Beside Px0{τ1 <∞} = 1, for some constant K > 0,

Ex0{τ1} := Ex

{∫ ∞
0

tλ(xt , t) exp
(
−
∫ t

0
λ(xs , s)ds

)
dt
}

=

= Ex

{∫ ∞
0

exp
(
−
∫ t

0
λ(xs , s)ds

)
dt
}
≤ K , ∀x .
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Impulse Control - Continuous Time Models Assumption (ACT)

Comments 7:

• In a continuous time models, keeping the system as a controlled
Markov-Feller process is really very general. (!?) [certainly including
switching diffusion processes with jumps]

• It can be argued that provided a very large state-space, any process is
Markov. (!?)

• It can be argued that if the ‘continuity’ (of the Feller property) is
dropped, then the model may have an incomplete description, this means
that the discontinuity should be understood and resolved. (!?)
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Impulse Control - Continuous Time Models Dynamic Programming Principle

Dynamic Programming Principle

Usual conditions on costs f , c , and on Γ(x) (impulse at x) and on
Mv(x) = infξ∈Γ(x)

{
c(x , ξ) + v(ξ)

}
, the jumps operator.

• Dynamic Programming Principle, with u0(x) = u0(x , 0), shows

u(x , y) = Exy

{∫ τ

0
e−αt f (xt , yt)dt + e−ατ min{Mu, u}(xτ , yτ )

}
, (2)

u(x , y) = Exy

{∫ τ

0
e−αt f (xt , yt)dt + e−ατu(xτ , yτ )

}
, y > 0,

u0(x) = min

{
Ex0

{∫ τ

0
e−αt f (xt , yt)dt + e−ατu0(xτ )

}
,Mu0(x)

}
,

(3)

u(x , y) = Exy

{∫ τ

0
e−αt f (xt , yt)dt + e−ατu0(xτ )

}
, (4)

and so, if u0(x) = u(x , 0) is known then the last equality yields u(x , y).

• However, getting u0 is like solving a discrete time problem.

JLM (WSU) Stochastic Interventions and Hybrid Models 20 / 21



Impulse Control - Continuous Time Models Switching Control

Switching Control

(1) reduced state xt = (x ′t , nt) belongs to E = E ′ × N;
(2) x ′t is a Markov process with a C0-semigroup Φi (t) when n = i ;
(3) nt is a Markov chain with generator Q = (qij), i.e., Ax = Ax ′ + Q.
(could have nt a semi-Markov process and N = {1, 2, . . .})
A switching control is a particular case of impulse control (conversely) but!
• However the specific assumptions make same differences, specifically, the
switching cost. Moreover, there are more differences in a ergodic cost
setting.
• Impulse and Switching Models (with and without constraint) are
particular cases of Hybrid control Models.

• Joint work with M Robin, Hybrid Models and Switching Control with
Constraints Communications on Stochastic Analysis, 2019, 13, 1–29.
(and several others, 2016 – 2020)

• ACTUALLY, THERE ARE MANY OTHER REFERENCES QUOTED IN
THE ABOVE WORKS !!!
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