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This talk..

• no closed form for expected value
• willing to sacrifice accuracy for speed
• error bounds

Talk outline:
1. Motivating problems
2. Additive/multiplicative bounds for expected values
3. Bounds based on Laplace method for integration

Problem addressed:

In collaboration with:
Raphael Chinchilla, Murat Erdal, Dr. Guosong Yang (UCSB)
Prof. Ramon Costa (Federal Univ. Rio Janeiro, Brazil)
Prof. Kevin Plaxco (UCSB)



Stochastic Optimal Control
Dubins vehicle (discrete-time)

• not possible to compute expectation in closed form, even if 𝑑! , 𝑤! , 𝜐!
multivariable Gaussian/von Misses

yet…
• need to solve fast for receding-horizon / Model Predictive Control (MPC)

angular velocity (control)

Cartesian 
disturbances

rotational disturbance



Estimation
Dynamical system:

state disturbances

measurement noise

unknown parameter

Maximum likelihood estimation:
prob. density function (pdf) of output



Estimation
Dynamical system:

state disturbances

measurement noise

unknown parameter

Maximum likelihood estimation:
prob. density function (pdf) of output

• output pdf is generally difficult to compute, but
• conditional output pdf given state is typically very easy to compute
• can write MLE as

law of total 
expectation

• generally no closed-form expression for expectation
yet,…
• need to solve fast to compute 𝜃-dependent a-posterior estimate of state, 

given measurements for output-feedback control

expectation w.r.t. 𝑥!



Experiment Design
Dynamical system:

state disturbances

measurement noise

unknown parameter

Goal: select 𝑢!, … , 𝑢" to minimize error for estimator



Experiment Design
Dynamical system:

state disturbances

measurement noise

unknown parameter

Goal: select 𝑢!, … , 𝑢" to minimize error for estimator

Assuming unbiased estimator that achieves Cramer-Rao lower bound

Fisher information 
matrix

Hessian matrix of 
measurements pdf

w.r.t
noise/disturbances

A-optimality: D-optimality:

minimizes parameter 
estimates MSE

minimizes volume of 
parameters estimates 
confidence ellipsoids

w.r.t 𝜃 w.r.t 𝜃



Monte Carlo Methods

Monte Carlo Integration:

random 
variable

indep. identically 
distributed (iid)
samples of 𝑑

error

• central limit theorem
• dimension-independent

In stochastic optimization, leads to Sample Average Approximation (SAA): 

e.g., stochastic gradient descent:

gradient of empirical average

random 
variable

step size

error
[Kleywegt et al, 2001 

[Shalev-Shwartz at al. 2010]



Monte Carlo Methods

Sample Average Approximation (SAA):

random 
variable

indep. identically 
distributed (iid)
samples of 𝑑

error

• central limit theorem
• dimension-independent

In stochastic optimization

e.g., stochastic gradient descent:

gradient of empirical average

random 
variable

step size

error
[Kleywegt et al, 2001 

[Shalev-Shwartz at al. 2010]

MC-based methods
• can be made arbitrarily accurate by making 𝐾 → ∞
• generally slow (need large 𝐾, # iterations)
• often computationally expensive to sample from desired distribution

(especially for conditional distribution given measurements, typically 
requiring Markov Chain Monte Carlos method, e.g., Metropolis Hastings or Gibbs 
sampling)

Our goal…
• Trade accuracy for speed
• If possible, get bounds on error



Outline
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Coarse Bounds on Expectations

Suppose  𝑑 is random variable taking values on 𝒟, and 

with probability 1

by monotonicity 

tightest such (upper) bound can discount zero-measure sets

values of 𝑑 with positive but small probability increase 
supremum but have little impact on expectation

𝑑 ∈ 𝒟 𝑑 ∈ 𝒟

pdf of 𝑑 pdf of 𝑑

𝑓(𝑑) 𝑓(𝑑)

bound is 
somewhat tight

bound is very 
loose



Coarse Bounds on Expectations

Suppose  𝑑 is random variable taking values on 𝒟, and 

with probability 1

by monotonicity 

tightest such (upper) bound can discount zero-measure sets

“naïf”  idea:

max will not pick value for 𝑑 with low probability
(very negative log-pdf)

prob. density function (pdf) of d

pdf of 𝑑

𝑓(𝑑)

pdf of 𝑑

𝑓(𝑑)

𝑑∗?



A Precise Bound
Additive bound: For every 𝜀 ≥ 0 (and assuming all expectations are finite),

prob. density function (pdf) of 𝑑

differential entropy of 𝑑
sup at value for which 

𝑓(𝑑) is large
but pdf not very small

inf at value for which 
𝑓(𝑑) is small

but pdf not very small



A Precise Bound
Additive bound: For every 𝜀 ≥ 0 (and assuming all expectations are finite),

prob. density function (pdf) of 𝑑

differential entropy of 𝑑
sup at value for which 

𝑓(𝑑) is large
but pdf not very small

inf at value for which 
𝑓(𝑑) is small

but pdf not very small

Why? (upper bound)

use “trivial” bound on this term

bound typically tighter as probability mass 
concentrated around large values of 

𝑓 𝑑 + 𝜖 log 𝑝(𝑑)



More Bounds
Additive bound: For every 𝜀 ≥ 0 (and assuming all expectations are finite),

prob. density function (pdf) of 𝑑

differential entropy of 𝑑

Multiplicative bound: For every 𝜀 > 0 (and assuming all expectations are finite),

More generally: For every function 𝛼:𝒟 → ℝ Any group operation that is 
1. right ordered
2. E-distributive 

for tight bound: pick 𝛼,⊕ so that prob. mass concentrated 
around max. of 𝑓 𝑑 ⊕ 𝛼(𝑑)



Application to Optimization

replacing by upper bound will 
find “conservative/pessimistic” 

solution

replacing by upper bound will 
guarantee feasibility

or…
replacing both by lower bounds 

will find “optimistic” solution

E.g., using additive upper bounds:

1. arg-min guaranteed to be feasible for original problem & perform no worst than 𝐽#
2. cost 𝐽# is an upper bound for 𝐽∗
3. replaced expectation/integration by optimization ➩ min-max problem
4. lower bound for 𝐽∗ computable using lower bounds for expected values



Application to Output-Feedback MPC

running cost, over 
future horizon

past 
measurements

future 
controls

a-posteriori (conditional) expectation with respect to:
1. unknown parameter 𝜃
2. past noise 𝑤&', … , 𝑤(
3. past and future disturbances 𝑑&', … , 𝑑)&*
given past measurement 𝑦&', … , 𝑦(

state disturbances

measurement noise
unknown 
parameter

past measurement
𝑦&', … , 𝑦(

past controls
𝑢&', … , 𝑢&*

now
(t=0)

future controls
𝑢(, … , 𝑢) In Model Predictive Control (MPC), 

optimization repeated at each time step 
under a receding horizon



Output-Feedback MPC

Observation: assuming 𝑥#$ , 𝑑! , 𝑤! , 𝜃 independent, joint pdf of 𝑥#$ , 𝑑! , 𝑦! , 𝜃 is 
easy to write

Why? Proof by induction to compute

starting at 𝑡 = −𝐾 & using Bayes rule for induction step 

Therefore,…
• closed-form solution for a-posteriori distribution 

(modulo normalization by pdf of 𝑦#$ , … , 𝑦% )
• but not easy to draw samples from a-posteriori distribution 

(need Metropolis-Hastings or Gibbs sampling)

pdfs of 𝑤!, 𝑑!, 𝑥&', 𝜃



Output-Feedback MPC

Can be restated as:

Using additive bound:

diff. entropy of D 
⇩

indep. of U
conditional pdf 
of D, given Y

joint pdf of 
D, given Y

⇩
closed-form 

solution

marginal 
pdf of Y
⇩

indep. of U



Output-Feedback MPC

Can be restated as:

Using additive bound:

• all optimization terms computed in closed form without need for integration
• stochastic optimization replaced by min-max problem
• one-to-one map from 𝑑! ’s to 𝑥! ’s, so we can regard 𝑥! ’s as the optimization variables 

(computationally much better for 2nd order/Newton methods because of Hessian sparsity)
• this and all optimizations in remainder of paper solved using TensCalc toolbox



LQG example

independent Gaussian parameters with 
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optimal control based on upper bound
(criterion value 1.79e3, computation sub-second)

optimal control based SSA, with Gibbs sampling
(criterion value 1.62e3, computation minutes)



Experiment Design
thermal column of raising air

wikipedia
image

vertical wind speed at position 𝑥

thermal 
parameters

stochastic 
variability

[Problem proposed by Prof. Isaac Kaminer]

Q: What is the best trajectory 𝑥! to estimate thermal parameters 𝜃 = [𝑣%, 𝛾, 𝑝%], 
from point measurements of vertical wind speed?



Experiment Design
thermal column of raising air

wikipedia
image

vertical wind speed at position 𝑥

thermal 
parameters

Q: What is the best trajectory 𝑥! to estimate thermal parameters 𝜃 = [𝑣%, 𝛾, 𝑝%], 
from point measurements of vertical wind speed?

stochastic 
variability

Fisher Information Matrix
for measurements with zero-mean 

Gaussian noise

noise 
variance

sensor position 
at time t

D-optimality:



Experiment Design
thermal column of raising air

wikipedia
image

vertical wind speed at position 𝑥

thermal 
parameters

Q: What is the best trajectory 𝑥!
to estimate thermal parameters 
𝑣%, 𝛾, 𝑝% vertical wind speed 
measurements?

A: a knot ;-) 
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Laplace Integration Method

smooth 𝑓(𝑥) with a maximum at 𝑥% and 𝑓&& 𝑥% < 0

Taylor series of 𝑓(𝑥) around 𝑥%:

0 at maximum < 0

Assuming 3rd and higher order terms negligible:

Gaussian integral:
• closed-form for 𝑏 = −𝑎 = ∞

• in practice, integral is computed by finding 
maximum 𝑥(



Laplace Integration Method
marginal 

distribution

joint 
distribution

Taylor series of Z ↦ log 𝑝(𝑍, 𝑌) around maximum 𝑍%:



Laplace Integration Method
marginal 

distribution

joint 
distribution

Taylor series of Z ↦ log 𝑝(𝑍, 𝑌) around maximum 𝑍%:

Assuming 3rd and higher order terms negligible:

marginal 
distribution joint distribution

computed at maximum 𝑍%
Gaussian integral

conditional 
means



Laplace Integration Method
marginal 

distribution

joint 
distribution

Taylor series of Z ↦ log 𝑝(𝑍, 𝑌) around maximum 𝑍%:

Assuming 3rd and higher order terms negligible:

marginal 
distribution joint distribution

computed at maximum 𝑍%
Gaussian integral

Given joint distribution 𝑝(𝑌, 𝑍) we can compute marginal, conditional
mean, and covariance matrix through optimization:

useful for MLE

useful for Bayesian 
estimation

Has been recognized as far back as 1986 [Tierney, Kadane], but now we 
have the optimization tools to use this in nontrivial problems ! 

typically easy to compute

conditional 
means



Pharmacokinetic Model

compartment 1 compartment 2

transfer between 
compartments

elimination injection

drug concentration 
in compartment 𝑖

at time 𝑡 + 1
[moles/liter]

elimination 
rate

transfer rate
between 

compartments 
𝑖 & 𝑗

(Fick’s law)

volume of 
compartment 𝑖

[liter]

injection at 
time 𝑡
[moles]

elimination injection



Vancomycin Rat Model

vein brain

elimination
injection

typically small since

∝ brain volumevein volume

(vein) injection 
at time 𝑡
[moles]

(no injection/elimination 
in brain)

volume of vein 
compart. [liter]

measurements from E-AB (Electrochemical-aptamer 
based) sensors [Plaxco Lab]
• in-vivo
• time-resolution of second

Vancomycin is an antibiotic medication used 
to treat a number of bacterial infections

meas. noise

Vancomycin 
concentrations



Recall…

Observation: assuming 𝑥#$ , 𝑑! , 𝑤! independent, joint pdf of 𝑥#$ , 𝑑! , 𝑦! is easy to 
write

Why? Proof by induction to compute

starting at 𝑡 = −𝐾 & using Bayes rule for induction step 

pdfs of 𝑤!, 𝑑!, 𝑥&'

Joint state-output pdf of a nonlinear system is easy to compute…



Vancomycin Rat Model
(vein) injection 

at time 𝑡
[moles]

Vancomycin 
concentrations

Defining

measurements

unknown parameters – large subject-2-subject variability 

initial conditions (known to be zero for our Vancomycin experiments)

unknown variances for measurement errors 
– large experiment-2-experiment variability 

Joint pdf 𝑝(𝑌, 𝑍; 𝜃) is easy to compute…



Vancomycin Rat Model
Defining

measurements

unknown parameters – large subject-2-subject variability 

initial conditions (known to be zero for our Vancomycin experiments)

unknown variances for measurement errors 
– large experiment-2-experiment variability 

noise variance estimation:

MLE to estimate 
for noise variances

parameter estimation:

a-posteriori parameter estimates 
and error covariances

arg-max from 
MLE estimate

From Laplace integration formulas …

optimization
for Laplace integration



Experimental results
in

di
vi

du
al

 1
in

di
vi

du
al

 2

Results based solely on measurements of brain concentration

concentration in brain
(measurements 

& state estimates)

concentration in vein
(state estimates 

for 2 global minima)

Just with brain 
measurements,

optimization has 2 
isolated global 

maxima
⥥

fundamental 
ambiguity in 
determining 

parameters &
vein concentration



Experimental results
in

di
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al

 1
in

di
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du
al

 2

Results based solely on measurements of brain concentration

concentration in brain
(measurements 

& state estimates)

concentration in vein
(measurement & state 

estimates)

Single maximum 
with both brain & 

vein measurements

(previous maxima also 
shown in right-figures)



COVID-19 forecasting
Stochastic SIR model:

susceptible

infected

removed 

daily new 
cases

daily new 
removals

Measurement model:
time-varying 

infection/removal rates

stochastic
disturbances

reported daily 
new cases

reported daily 
deaths

measurement 
noise

time-varying 
reporting rates

A-priori parameter drift model:
𝛽 𝑡 , 𝛾 𝑡 , 𝜙 𝑡 , 𝜔(𝑡)

random walks with unknown variances



Recall…

Observation: assuming 𝑥#$ , 𝑑! , 𝑤! independent, joint pdf of 𝑥#$ , 𝑑! , 𝑦! is easy to 
write

Why? Proof by induction to compute

starting at 𝑡 = −𝐾 & using Bayes rule for induction step 

pdfs of 𝑤!, 𝑑!, 𝑥&'

Joint state-output pdf of a nonlinear system is easy to compute…



COVID-19 forecasting
Stochastic SIR model:

susceptible

infected

removed 

Defining

past measurements

past and future states

future measurements

Joint pdf 𝑝(𝑌, 𝑍) is easy to compute…



COVID-19 forecasting
Defining

past measurements

past and future states

future measurements

Identification: Forecasting:

a-posteriori forecasts 
and error covariances

MLE to estimate 
unknown 

for noise/disturbance 
variances

arg-max from 
MLE estimate

optimization
for Laplace integration



Results
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(b) United Kingdom
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(c) Germany
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(e) Japan

M
ar

-2
9

Apr
-2

6

M
ay

-2
4

Ju
n-

21

Ju
l-1

9

Aug
-1

6

Sep
-1

3

O
ct
-1

1

Nov
-0

8

Dec
-0

6

10 2

10 4

In
d
ia

 n
e
w

 c
a
se

s

daily measurements

7 days predictions

14 days predictions

21 days predictions

M
ar

-2
9

Apr
-2

6

M
ay

-2
4

Ju
n-

21

Ju
l-1

9

Aug
-1

6

Sep
-1

3

O
ct
-1

1

Nov
-0

8

Dec
-0

6

10 2

In
d
ia

 d
e
a
th

s

(f) India

Figure 8: Running forecasts for the daily numbers of new cases and deaths for the model

(3)–(4), based on data available up to 7, 14, and 21 days prior to the forecast. The solid lines

depict the forecasts, whereas the dashed lines of the same color depict the corresponding 95%

confidence intervals. To keep the plots less cluttered, only the upper bound of the confidence

interval is plotted. These plots di↵er from those in Figure 4 in that here the death rate ! was

assume constant.
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(a) São Paulo State, Brazil
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(b) New York, USA
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(c) California, USA
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(d) Texas, USA
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(e) Illinois, USA
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Figure 9: Continuation from Figure 8.
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Model not identifiable, but 
still possible to reliably 
compute 
1. Maximum likelihood 

estimates for unknown 
random walk variances

2. 7-14-21 day Bayesian 
forecasts for measured 
variables 



Conclusions
• no closed form for expected value
• willing to sacrifice accuracy for speed
• error bounds

Optimization-based bounds
1. Additive/multiplicative bounds for expected values
2. Laplace method for integration

Problem addressed:

In collaboration with:
Raphael Chinchilla, Murat Erdal, Dr. Guosong Yang (UCSB)
Prof. Ramon Costa (Federal Univ. Rio Janeiro, Brazil)
Prof. Kevin Plaxco (UCSB)

What I did not talk about: 
• Numerical methods to solve min-max optimizations

• primal-dual interior point methods for min-max equilibria
• MATLAB toolbox (TensCalc)

Future/current work:
• Which methods/bounds to use?
• Combination with MC methods
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