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• General hybrid systems involve the integration and intimate 
interactions between the analog state processes and the discrete 
event systems. 

• Switched linear systems are an important class of hybrid systems, 
such as automotive systems, autonomous vehicles, smart grids, 
battery networks, social networks, biological and medical 
systems, among many others.  

• Randomly switched linear systems are very common., such as 
communication packet loss , machine breakdown in assembly 
lines, cyber attacks, power line interruption, robot malfunction in 
robot teams, obstacles in the line of sight of unmanned aerial 
vehicles, and intermittent power outputs in wind or solar 
generators. 

• Randomly switched linear or nonlinear systems  have been 
treated as stochastic hybrid systems, regime-switching systems, 
and hybrid switching diffusions 

Motivations and Focus 



Consider a continuous-time single-input-single-output hybrid system 
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Randomly Switching Linear Systems 



Assumption 1 
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   Lemma 1 

(1) Ker(G)=ker(W) 

(2) The LTI system is observable if and only if W is full rank.  
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Classical Observability on LTI Systems 



(1) This paper deals with estimation of the analog 

states based on  observations on y.  

(2) It deals with hybrid systems whose subsystems 

are not observable.  

(3) Subsystems must coordinate to achieve state 

estimation. 

(4) We want to establish conditions and design 

methods to obtain convergent state observers. 

Objectives of this Work 
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Off-Line System Observability Properties 
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The State Dynamics of the Hybrid System 

Stochastic Matrices in Operation 
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Definition  
The hybrid system is said to be  off-line collectively 
observable if WS is full rank. 
 

Remarks 
• Since WS contains only off-line information on 

subsystems, off-line collective observability is 
independent of time. 

• It is easy to see that in most applications a hybrid 
system needs to be off-line collectively observable for 
possible stochastic observability. 

• However, the relationship between the rank of WS and 
stochastic observability is complicated. 



Asymptotic Observability of  
Randomly Fast Switching Linear Systems 



Assumption 2 
WS is full column rank, namely the hybrid system is off-

line collectively observable. 
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Let ρl  be the probability of the event ``the hybrid system 
remains stochastically unobservable after  observing y 
in [0, lτ)". 
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Exponential Convergence in Probability 



Observer Design of  
Randomly Switched Linear Systems 



Assume that each subsystem is not observable, . 

We construct ker (   
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Dynamics of  the observable sub-state 
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From subsystem observers,

 define the true observable sub-states
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Integration of Observable Sub-State Dynamics 
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Case 1: αk = i  
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Under the given , for some 0,

   

which can be made arbitrarily small 

by choosing sufficiently large .
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On the other hand, if , the subsystem observer will run open loop. 

Since the open-loop dynamics of   will depend on the actual , 

it will show interaction with other subsystems.
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Convergence Analysis of Observers: 
Independent Subspace Error Dynamics 



A hybrid system is said to have independent subspace error 
dynamics if its observable sub-states dynamic system, namely the 
derivative of zi, depends on zi only. 

Definition 

The situation is motivated by network systems whose dynamics 
are described by a large-scale constant A matrix, but each 
subsystem has different C(j) for different and highly limited  
sensing systems. Then, the subsystem state equation will be 
independent of αk and 
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Strong Convergence of Subsystem Observers 
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State Estimation Error Probability  
and Large Deviation Principles 
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Error Dynamics and Convergence: 
General Case 
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The systems of independent open dynamics are the special case of 

Assumption 3, when the triangular matrix is actually diagonal,
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 This special  is a sufficient condition. It is not a 
necessary conditions since there may be other 
switching sequences of positive probability that also 
allow a suitable observer design to achieve similar 
convergence rates. But S is uniquely suitable for 
employing the triangular system structure to achieve 
desired convergence. 
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