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Background

Prismatic loop images-pictures borrowed from web

Picture by Chaldyshev et al ’02
Dislocation loops in Sb-doped LT GaAs
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Background

Prismatic loop images-pictures borrowed from web

Picture by Xiu et al. ’20
Dislocation loops in irradiated FCC alloy
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Background

What is self-climb of dislocation loops

During the core diffusion process, atoms can be absorbed or
emitted by the core region, leading to climb out of the original
slip plane, known as dislocation self-climb.

Driven by pipe diffusion of vacancies along the
dislocations.
Area enclosed by dislocation loop (projected perpendicular
to Burgers vector) is preserved during the self climb
motion.
Dominant mechanism of prismatic motion at not very high
temperatures (much faster diffusivity comparing to bulk
diffusion)
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Background

Experimental observations of self-climb of prismatic loops

Self-climb motion of dislocations plays an important role in
irradiated materials.

Johnson (1960), Silcox and Whelan (1960), Vendervoort and
Washburn (1960), Krupa and Price (1961), Turnbull (1970),
Narayan and Washburn (1972), Hirth and Lothe (1982), Burton
and Speight (1986), Durarev (2013), Durarev et al
(2014)Swinburne et al (2016), Okata et al (20160, Hayakawa et
al (2016)
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Background

Previous models for self climb

Johnson (1960) Proposed short circuit mechanism
(self-climb) for coalescence of dislocation loops.
Kroupa (1960)

Derived analytical formula for self-climb velocity for circular
loops
Climb velocity of the circular loop satisfies linear mobility
law vcl ∼ fcl
Assume loop remain unchanged during evolution

Turunen and Lindroos (1974)
Proposed a self-climb model for dislocation line
climb velocity v ∼ d2

ds2 fcl
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Background

Previous models for self climb continued

Niu et al (2017)
Discrete dislocation dynamics model via upscaling from
stochastic self climb model.
v ∼ d2

ds2 fcl
local velocity formula, works for any dislocation

Niu et al (2019) Numerical simulations for the DDD model.
Liu et al (2020) Finite element framework for self-climb.
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Background

Dislocation self-climb velocity formulation

Niu-Luo-Lu-Xiang (2017): The climb velocity

vcl = v (b)
cl + v (p)

cl

where v (b)
cl is the climb velocity due to bulk diffusion and

v (p)
cl is climb velocity due to pipe diffusion. The self climb

velocity is proportional to the second derivative of the
vacancy concentration on the dislocation core.

v (p)
cl = Dcb

d2

ds2 cc
d = c0Dcb

d2

ds2 e−
fcl Ω

bKBT

When fcl � bKbT
Ω , the self climb velocity reduces to

v (p)
cl = −c0DcΩ

kBT
d2fcl

ds2
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Background

Why Phase field model

Common framework for evolution of interfaces.
Can handle topological automatically and to avoid
re-meshing during simulations.
Phase field models for glide and climb by vacancy bulk
diffusion have been developed. Core diffusion has been
ignored in those models.



Introduction Asymptotic analysis of the phase field model Numerical Simulations Current and Future work

Proposed phase field model

Phase field model

Phase field model for self-climb of prismatic dislocation loops

φt = ∇ ·
(

M(φ)∇ µc

g(φ)

)
µc = −∆φ+

1
ε2 q′(φ) +

1
ε

h(φ)fcl

=
δECH

δφ
+

1
ε

h(φ)
δEel

δφ

where
ECH(φ) =

∫
Ω

1
2
|∇φ(x)|2 +

1
ε2 q(φ(x))dx

is the classic Cahn-Hillard energy and
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Proposed phase field model

Proposed phase field model continued

elastic energy is

Eel =

∫
Ω

(
1
2
φf d

cl − φf app
cl

)
dx

Here

M(φ) = M0φ
2(1− φ)2 g(φ) = φ2(1− φ)2,

are degenerate mobility and stability function respectively, and

q(φ) = 2φ2(1− φ)2 h(φ) = H0φ
2(1− φ)2.

h(φ) guarantee the climb force is only added to the C-H
chemical potential only on the dislocations.
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Proposed phase field model

Proposed phase field model continued

We assume all prismatic loops have same Burgers vector
b = (0,0,b) and let σ denote the stress. Then

fcl = −σ33b = f d
cl + f app

cl

where
f d
cl = −σd

33b, f app
cl = −σapp

33 b

with σd
33 is a stress component generated by all dislocations

given by

σd
33 =

µb
4π(1− ν)

∫
C
−x − x

R3 dy +
y − y

R3 dx
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Outer expansion

Outer expansion

We first consider expansion with respect to ε in the region away
from the dislocations. Assume

φ(x , y , t) = φ(0)(x , y , t) + εφ(1)(x , y , t) + ε2φ(2)(x , y , t) + · · · .

Accordingly, we have

g(φ) = g(φ(0)) + g′(φ(0))φ(1)ε

+

(
g′(φ(0))φ(2) +

1
2

g′′(φ(0))
(
φ(1)

)2
)
ε2 + · · · ,

h(φ) = h(φ(0)) + h′(φ(0))φ(1)ε

+

(
h′(φ(0))φ(2) +

1
2

h′′(φ(0))
(
φ(1)

)2
)
ε2 + · · · ,

q(φ) = q(φ(0)) + g′(φ(0))φ(1)ε

+

(
q′(φ(0))φ(2) +

1
2

q′′(φ(0))
(
φ(1)

)2
)
ε2 + · · ·
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Outer expansion

Outer expansion continued

We also expand the climb force and chemical potential as

f d
cl (x , y , φ) = f d

cl (x , y , φ
(0)) + f d

cl (x , y , φ
(1))ε+ f d

cl (x , y , φ
(2))ε2 + · · · ,

µc =
1
ε2

(
µ

(0)
c + µ

(1)
c ε+ µ

(2)
c ε2 + · · ·

)
For M(φ) = M0g(φ), we rewrite our phase field equation as

φt = M0

(
∆µc −∇ ·

(
µc

g′(φ)

g(φ)
∇φ
))
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Outer expansion

Outer expansion -matching ε powers O( 1
ε2 ), O(1

ε )

Comparing ε powers on both sides, we have

O(
1
ε2 ) 0 = ∆µ

(0)
c −∇ ·

((
µc

g′(φ)

g(φ)

)(0)

∇φ(0) )

Here µ(0)
c = q′(φ(0)),

(
µc

g′(φ)
g(φ)

)(0)
= 8(1− 2φ(0))2. φ(0) = 1 or 0

satisfies this equation.

O(
1
ε

) 0 = ∆µ
(1)
c −∇ ·

((
µc

g′(φ)

g(φ)

)(0)

∇φ(1)

)

−∇ ·

((
µc

g′(φ)

g(φ)

)(1)

∇φ(0)

)
. (1)
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Outer expansion

Outer expansion -matching ε powers O(1)

Substituting µ(1)
c = q′′(φ(0))φ(1) + h(φ(0))f d

cl (x , y , φ
(0)) and

φ(0) = 1 or 0 into (1), we have

∆
(

q′′(φ(0))φ(1)
)
−∇ ·

(
8(1− 2φ(0))2∇φ(1)

)
= 0. (2)

Thus φ(1) = 0 satisfies (2).
The order O(1) equation is

φ
(0)
t = M0

[
∆µ

(2)
c −∇ ·

((
µc

g′(φ)

g(φ)

)(2)

∇φ(0)

)

−∇ ·

((
µc

g′(φ)

g(φ)

)(1)

∇φ(1)

)
(3)

−∇ ·

((
µc

g′(φ)

g(φ)

)(0)

∇φ(2)

)]
.
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Outer expansion

Outer expansion O(1) continued

Substituting φ(0) = 1 or 0, φ(1) = 0 and

µ
(2)
c = −∆φ(0) + q′′(φ(0))φ(2) +

1
2

q′′′(φ(0))
(
φ(1)

)2

+h′(φ(0))f d
cl (x , y , φ

(0))φ(1) + h(φ(0)f d
cl (x , y , φ

(1))

into (3), we have

∆
(
′′(φ(0)φ(2)−

)
−∇ ·

((
µc

g′(φ)

g(φ)

)(0)

∇φ(2)

)
= 0. (4)

For which φ(2) = 0 is a solution.
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Outer expansion

Outer expansion O(εk )

In general, the O(εk ) ( k ≥ 1 ) equation is

φ
(k)
t = M0

[
∆µ

(2+k)
c −

k+2∑
i=1

∇ ·

((
µc

g′(φ)

g(φ)

)(i)

∇φ(k+2−i)

)]

Substituting φ(0) = 1 or 0, φ(1) = · · · = φ(k+1) = 0 and

µ
(k+2)
c = −∆φ(k) +

(
q′(φ)

)(k+2)
+
(

h(φ)f d
cl (x , y , φ)

)(k+1)

into (5) , yields

∆
(
′′(φ(0)φ(k+2)−

)
−∇ ·

((
µc

g′(φ)

g(φ)

)(0)

∇φ(k+2)

)
= 0. (5)

thus φ(k+2) = 0 is a solution.
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Outer expansion

Outer expansion-summary

The outer expansion shows

φ(0) = 1 or 0;φ(k) = 0.

i.e φ = 0 or 0 in the outer region.
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Inner expansion and asymptotic matching

Inner region-coordinates

For a point in the small region near the dislocation, we can write

r(s,d) = r0(s) + dn(s)

where s be the arc length parameter of the dislocation, r0(s)
represents point on the dislocation and d is the signed distance
from point r to the dislocation.
Let ρ = d/ε, under coordinate system (s, ρ) with coordinate
axes (t(s),n(s)), we have

∇ =
1

1− ερκ
t∂s +

1
ε

n∂ρ
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Inner expansion and asymptotic matching

Inner region-coordinates continued

Write φ(x , y , t) = Φ(s, ρ, t), the phase field equation can be
written as

Φt +
1
ε

vn∂ρΦ =
M0

1− ερκ
∂s

(
1

1− ερκ

(
∂sµc −

g′(Φ)

g(Φ)
µc∂sΦ

))
+

1
ε2

M0

1− ερκ
∂ρ

(
1

1− ερκ

(
∂ρµc −

g′(Φ)

g(Φ)
µc∂ρΦ

))

µc = − 1
1− ερκ

∂s

(
1

1− ερκ
∂sΦ

)
− 1
ε2

1
1− ερκ

∂ρ ((1− ερκ)∂ρΦ)

+
1
ε2 q′(Φ) +

1
ε

h(Φ)f d
cl (s, ρ,Φ)
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Inner expansion and asymptotic matching

Inner expansion

Expand in ε powers,

Φ(s, ρ, t) = Φ(0)(ρ) + εΦ(1)(s, ρ, t) + ε2Φ(2)(s, ρ, t) + · · ·

fcl(s, ρ,Φ) =
1
ε

f (−1)(ρ,Φ(0)) + f (0)
cl (s) + O(ε)

where the force due to stress field 1
ε f (−1)(ρ,Φ(0)) and climb

force on the dislocation f (0)
cl (s) are

f (−1)(ρ,Φ(0)) =
µb

2π(1− ν)

∫ ∞
−∞

∂ρΦ(0)(ρ1)

ρ− ρ1
dρ1

f (0)
cl (s) = f d

cl (s) + f app
cl (s)

f d
cl (s) =

µb2

4π(1− ν)
κ ln ε+ O(1)
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Inner expansion and asymptotic matching

Asymptotic matching-O(ε−4)

Matching the ε powers on both sides, we have The O(ε−4)
equation is

∂ρρµ
(0)
c − ∂ρ

(
µ

(0)
c

g′(Φ(0))

g(Φ(0))
∂ρΦ(0)

)
= 0 (6)

µ
(0)
c = −∂ρρΦ(0) + q′(Φ(0)) + h(Φ(0))f (−1)

cl (ρ,Φ(0)).

Integrating (6), we have

∂ρµ
(0)
c − µ

(0)
c ∂ρ ln g

(
Φ(0)

)
= C1(s) (7)

Recall µ(0)
c = 0 in the outer region, the asymptotic matching

gives µ(0)
c , ∂ρµ

(0)
c both→ 0 as ρ→ ±∞. Thus C1(s) = 0.
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Inner expansion and asymptotic matching

Asymptotic matching O(ε−4)-continued

Divide (7) by µ(0)
c and integrate, we have

µ
(0)
c = C2(s)g(Φ(0)).

Since µ(0)
c is independent of s and goes to 0 as ρ→ ±∞, we

must have C2(s) = 0. i.e.

−∂ρρΦ(0) + q′(Φ(0)) + h(Φ(0)f (−1)
cl (ρ,Φ(0)) = 0. (8)

Solution to (8) with far field condition Φ(0)(+∞) = 0,
Φ(0)(−∞) = 1 can found numerically.
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Inner expansion and asymptotic matching

Graph of Φ(0)(ρ)

H0 = 56.25
(
2(1− ν)/µb2),

(0) 1

0.8 

0.6 

0.4 

0.2 

0 
-6    -5    -4    -3    -2   -1    0 1 2 3 4 5 6

Figure 2: Profile of Φ(0) (ρ) by solving Eq. (4.28)  (solid blue line), and comparison 
with that in the classical Cahn-Hilliard equation (dashed red line). 
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Inner expansion and asymptotic matching

Asymptotic matching-O(ε−3)

The O(ε−3) equation is

∂ρρµ
(1)
c − ∂ρ

(
µ

(1)
c

g′(Φ(0))

g(Φ(0))
∂ρΦ(0)

)
= 0 (9)

µ
(1)
c = −∂ρρΦ(1) + κ∂ρΦ(0) + q′′

(
Φ(0)

)
Φ(1) + h(Φ(0))f 0

cl(s)

+h′(Φ(0))f (−1)
cl (ρ,Φ(0))Φ(1) (10)

∂ρµ
(1)
c − µ

(1)
c ∂ρ ln g

(
Φ(0)

)
= C3(s) (11)

Matching with outer solutions, we have µ(1)
c , ∂ρµ

(1)
c → 0 as

ρ→ ±∞, therefore C3(s) = 0. (11) yields

∂ρ ln
(
µ

(1)
c /g(Φ(0))

)
= 0,

thus
µ

(1)
c = D1(s)g(Φ(0))
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Inner expansion and asymptotic matching

Asymptotic matching-O(ε−3): µ(1)
c

i.e

D1(s)g(Φ(0) = −∂ρρΦ(01) + κ∂ρΦ(0) + q′′
(

Φ(0)
)

Φ(1) (12)

+h(Φ(0))f 0
cl(s) + h′(Φ(0))f (−1)

cl (ρ,Φ(0))Φ(1)

Multiply ∂ρΦ(0) to (12) and integrate with respect to ρ from −∞
to∞, we have∫ ∞

−∞

(
−∂ρρΦ(1) + q′′

(
Φ(0)

)
Φ(1)

)
∂ρΦ(0)dρ

+

∫ ∞
−∞

h′(Φ(0))f (−1)
cl (ρ,Φ(0))Φ(1)∂ρΦ(0)dρ

=

∫ ∞
−∞

(
−∂ρρΦ(1) − q′′

(
Φ(0)

)
− h(Φ(0))f (−1)

cl (ρ,Φ(0))
)
∂ρΦ(1)dρ

= 0
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Inner expansion and asymptotic matching

Asymptotic matching-O(ε−3): µ(1)
c

The remaining terms are∫ ∞
−∞

(
κ∂ρΦ(0) + h(Φ(0))f 0

cl(s)
)
∂ρΦ(0)dρ =

∫ ∞
−∞

D1(s)g(Φ(0))∂ρΦ(0)dρ

thus
D1(s) = −α0κ+ H0f 0

cl(s)

where

−α0 =

∫∞
−∞

(
∂ρΦ(0)

)2
dρ∫∞

−∞ g(Φ(0))∂ρΦ(0)dρ

hence
µ

(1)
c = g(Φ(0))

(
−α0κ+ H0f 0

cl(s)
)
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Inner expansion and asymptotic matching

Asymptotic matching-O(ε−2)

Let µ = µc
g(Φ) , the O(ε−2) equation becomes

∂ρ

(
g(Φ(0))∂ρµ

(2)
)

= 0

thus g(Φ(0))∂ρµ
(2) = C4(s), the matching condition at ρ = ±∞

gives C4(s) = 0. Therefore

µ(2) =

(
µc

g(Φ)

)(2)

= D2(s)
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Inner expansion and asymptotic matching

Asymptotic matching-O(ε−1)

The O(ε−1) equation is

vn∂ρΦ(0) = M0∂ρ

(
g(Φ(0))∂ρµ

(3)
)

+ M0∂s

(
g(Φ(0))∂sµ

(1)
)

Integrating w.r.t ρ from −∞ to∞, we have

vn = M0∂ssµ
(1)

∫ ∞
−∞

g(Φ(0))dρ

Since µ(1) = µ
(1)
c

g(Φ(0))
= −α0κ+ H0f 0

cl(s), we arrive at our sharp
interface equation

vn = M0αH0
d2

ds2

(
−α0

H0
κ+ f (0)

cl (s)

)
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Numerical Simulations

In our simulations, the domain is chosen as Ω = [−π, π]2, mesh
size dx = dy = 2π/M with M = 64. Periodic boundary
conditions are used. Small parameter in the phase field model
is taken as ε = dx . b = 2π/300. H0 = 52.65(2(1− ν)/µb2.

In the numerical simulations, we use the pseudospectral
method: All the spatial partial derivatives are calculated in the
Fourier space using FFT. For the time discretization, we use the
forward Euler method. The climb force generated by
dislocations f d

cl is calculated by FFT using Eq. (3.8). g(φ) is

regularized by
√

g(φ)2 + ε2
0 with ε0 = 0.005. In the initial

configuaration of a simulation, φin the dislocation core region is
set to be a tanh function with width 3ε, the location of the
dislocation loop is the contour φ = 0.5.
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Evolution of an elliptic prismatic loop

l1 = 80b and l2 = 40b. Radius for the ending circle is
R = 54.9b. Theoretical value for R is R =

√
l1l2 = 56.6b.

Evolution time is t = 1.21× 107( 1
2(1−ν) ·

µΩ
kBT ·

c0Dc
b2 )−1.

 
 
 
 
 

 
 

Figure 3: Evolution of an elliptic prismatic loop by self-climb using the phase field 
model. Red ellipse is the initial state, and green circle is the final state. 
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Comparison with DDD simulations

Radius for the ending circle is R = 56.6b. Theoretical value for
R is R =

√
l1l2 = 56.6b. t = 1.13× 107( 1

2(1−ν) ·
µΩ
kBT ·

c0Dc
b2 )−1

 
Fig. 4. Numerical simulation of self-climb of an elliptic prismatic loop (in blue), which converges to a circular loop (in red). Some snapshots of the  
loop in equal time intervals during the evolution are also shown (in green). (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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Translation of circular prismatic loop under constant stress
gradient

The initial radius R = 100b. The applied stress field is
σapp

33 = −px with p = 10−5µ/b. v = 1.95× 10−5c0Dc/b.

Figure 4: Translation of a circular prismatic loop under constant stress gradient 
using the phase field model. The leftmost, red circle is the initial configuration of 
the loop. 

Figure 4: Translation of a circular prismatic loop under constant stress gradient 
using the phase field model. The leftmost, red circle is the initial configuration of 
the loop. 
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Figure 4: Translation of a circular prismatic loop under constant stress gradient 
using the phase field model. The leftmost, red circle is the initial configuration of 
the loop. 
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Comparison with DDD simulations

v = 1.94× 10−5c0Dc/b. Theorectical value of v is
v = 1.85× 10−5c0Dc/b.

 
 

 
 

 

 
 

Fig. 5. Simulation of translation of a circular prismatic loop under constant stress gradient. Snapshots of the loop at n   t , n     0,1, , N , are 
shown. The blue circle is the initial loop, and the red circle is the loop at N t . (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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Coalescence of prismatic loops

R1 = 60b and R2 = 35b, d = 110b. Final radius R = 69.6b.
Theorectical value of R = 69.5b.
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Figure 5: Coalescence of two prismatic loops by self-climb under their elastic inter- 
action obtained by the phase field model. 
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Comparison with DDD simulations

R1 = 81b and R2 = 48b, d = 149b. Final radius R = 94.3b.
Theorectical value of R = 94.2b.

  
 

  
 

  
 

  
 

  
 

  

Fig. 6. Coalescence of two interstitial loops by self-climb under their elastic interaction obtained by our DDD simulation. The length unit is b. These 
images show the simulation results at time 0s, 0.47s, 0.49s, 0.70s, 1.04s, and 4.10s, respectively. 
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Coalescence of several prismatic loops
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Figure 6: Coalescence of seven prismatic loops by self-climb under their elastic 
interaction obtained by the phase field model. 
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Repelling of two circular prismatic loops with opposite directions
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Figure 7: Repelling of two circular prismatic loops by self-climb under their elastic 
interaction obtained by our phase field model. The two red loops are the initial 
locations. Configurations of the two loops at different times during the evolution 
are shown by different colors. 
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Phase field model for dislocation climb coupled with self-climb

dislocation climb coupled with self-climb of prismatic loops

φt = ∇ ·
(

M(φ)∇ µc

g(φ)

)
− βµc

µc = −∆φ+
1
ε2 q′(φ) +

1
ε

h(φ)fcl

=
δECH

δφ
+

1
ε

h(φ)
δEel

δφ

Asymptotic analysis gives sharp interface limit equation

vn = αH0

(
−M0

(
−α0

H0
κ+ f (0)

cl (s)

)
+ β

(
−α0

H0
κ+ f (0)

cl (s)

))
.

Future question: What about rigorous analysis? Existence?
Uniqueness? Rigorous analysis for sharp interface limit?
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Phase field model for dislocation climb coupled with self-climb

Thank you!
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