
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Stochastic Damping Hamiltonian Systems with
State-Dependent Switching

Chao Zhu
University of Wisconsin-Milwaukee

(with Fuke Wu and Fubao Xi)

Symposium on Stochastic Hybrid Systems and Applications
University of Connecticut, November 12-13, 2021



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction

Weak Solution via the Martingale Approach

Strong Feller Property

Exponential Ergodicity

Large Deviation Principle
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Hamiltonian system with damping

▶ Hamiltonian systems have a wide range of applications and
are used as models for classical mechanics, electromagnetic
forces, quantum mechanics, etc.

▶ In physical systems, damping is produced by processes that
dissipate the energy stored in the oscillation. Examples
include viscous drag in mechanical systems, resistance in
electronic oscillators, and absorption and scattering of light in
optical oscillators.

▶ The evolution of the system can be formally described by the
Hamilton equation:

η̈(t) + c(η(t), η̇(t))η̇(t) +∇xV(η(t)) = 0

where c is the damping coefficient and V(x) is the potential.
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Examples

▶ the Duffing oscillator:
c(x, y) ≡ c > 0 and V(x) is a lower bounded polynomial.

▶ the van der Pol oscillator:
c(x, y) = x2 − 1, V(x) = 1

2ω
2
0x2.

▶ the Liénard oscillator:
c(x, y) = f(x) and V(x) =

∫ x
0 g(u)du with f and g being

appropriate continuously differentiable functions on R.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Stochastic Hamiltonian Systems with Damping

A stochastic Hamiltonian system with damping can be formally
described by

η̈(t) + c(η(t), η̇(t))η̇(t) +∇xV(η(t)) = σ(η(t), η̇(t))Ẇ(t),

where
▶ c is the damping coefficient,
▶ V is the potential,
▶ Ẇ denotes the generalized derivative of a standard Wiener

process,
▶ σẆ is the random force.
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Stochastic Damping Hamiltonian System with Switching:
Motivations
Weakly coupled oscillators

▶ Suppose there are infinitely many oscillators indexed by
k ∈ S = {1, 2, . . . }.

▶ At time t = 0, only one oscillator, say, i ∈ S, is active, whose
dynamics is given by

η̈i(t) + ci(ηi(t), η̇i(t))η̇i(t) +∇xVi(ηi(t)) = σi(ηi(t), η̇i(t))Ẇi(t),
▶ After a random amount of time, the oscillator i becomes

dormant and another oscillator, say, j ̸= i, becomes active.
The dynamics of oscillator j is given by

η̈j(t) + cj(ηj(t), η̇j(t))η̇j(t) +∇xVj(ηj(t)) = σj(ηj(t), η̇j(t))Ẇj(t),

The oscillator j will stay active for another random amount of
time until it becomes dormant and another oscillator becomes
active.

▶ ... ...
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Stochastic Damping Hamiltonian System with Switching:
Motivations
Oscillator in random environments

▶ Physical systems are subject to various random perturbations.

▶ In particular, the potential function, damping coefficient, and
random force may change randomly and abruptly, resulting in
structural changes for the Hamilton system.

Examples:
▶ nonlinear vibration systems under random excitation,
▶ particles or electromagnetic waves propagate through different

media.
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Stochastic Damping Hamiltonian System with Switching

▶ Write X(t) := η(t) ∈ Rd and Y(t) := η̇(t) ∈ Rd.
▶ Consider X(t) being the position and Y(t) the momentum of

the system.
▶ Z = (X,Y) satisfies

dX(t) = Y(t)dt,
dY(t) = −

[
c(X(t),Y(t),Λ(t))Y(t) +∇xV(X(t),Λ(t))

]
dt

+σ(X(t),Y(t),Λ(t))dB(t),
(1)

▶ B ∈ Rd is a standard Brownian motion.
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▶ Λ ∈ S = {1, 2, . . . } satisfies

P{Λ(t +∆) = l|Λ(t) = k, (X(t),Y(t)) = (x, y)}

=

{
qkl(x, y)∆ + o(∆), if k ̸= l,
1 + qkk(x, y)∆ + o(∆), if k = l,

(2)

uniformly in R2d, provided ∆ ↓ 0.
▶ The evolution of the environments depends on the state of

the Hamiltonian system.
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The Standing Assumptions

For each k ∈ S, we assume that
(i) the potential function V(·, k) is bounded below and

continuously differentiable on Rd;
(ii) the damping coefficient c(·, ·, k) is continuous and for all

N > 0:

sup{∥c(x, y, k)∥H.S. : |x| ≤ N, y ∈ Rd} < ∞,

and there exist c, L > 0 such that

cs(x, y, k) ≥ cI > 0 for all |x| > L and y ∈ Rd;

Here cs(x, y, k) := 1
2(c(x, y, k) + cT(x, y, k)) and ∥ · ∥H.S. is the

Hilbert-Schmidt norm of matrices.
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(iii) the random perturbation σ(·, ·, k) is symmetric, infinitely
differentiable and for some σ̂ > 0: 0 < σ(x, y, k) ≤ σ̂I over
R2d, where I is the d-dimensional identity matrix;

(iv) the formal generator of the switching process
Q(x, y) :=

(
qkl(x, y)

)
is a matrix-valued measurable function

on R2d such that for all (x, y) ∈ R2d and k ∈ S,
▶ qkl(x, y) ≥ 0 for k ̸= l and qkk(x, y) = −

∑
l∈S\{k} qkl(x, y) ≤ 0;

▶ there exists a constant H > 0 such that

sup
k∈S

∑
l∈S\{k}

sup
(x,y)∈R2d

qkl(x, y) ≤ H.
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Some Remarks

▶ The diffusion coefficient of (1) is degenerate.
▶ The coefficients ∇V(x, k) and c(x, y, k) are only continuous.
▶ Hence, the hypoellipticity need not hold for (1).
▶ Besides, ∇xV(x, k) and c(x, y, k) perhaps satisfy neither the

linear growth nor the Lipschitz conditions.
▶ The component Λ has a countable state space and its

switching rates depend on the state (X,Y).

The existence and uniqueness of a solution and properties such as
the strong Feller property of the corresponding Markov process are
not obvious.
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In this work

▶ Weak solution via the martingale problem approach.
▶ Strong Feller property by the killing technique and a transition

probability identity.
▶ Exponential ergodicity under a Foster-Lyapunov drift

condition.
▶ Large deviation principle.
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The Operators
For all functions f ∈ C∞

c (R2d ×S), we define the following operator:

Af(x, y, k) := Lkf(x, y, k) + Q(x, y)f(x, y, k). (3)

Here, for each k ∈ S,
▶ Lk is the differential operator:

Lkf(x, y, k) :=
1
2tr
(
a(x, y, k)∇2

yf(x, y, k)
)
+ ⟨y,∇xf(x, y, k)⟩

− ⟨c(x, y, k)y +∇xV(x, k),∇yf(x, y, k)⟩,
(4)

where a(x, y, k) = σ(x, y, k)σ(x, y, k)T,
▶ the switching operator Q(x, y) is given by:

Q(x, y)f(x, y, k) :=
∑
l∈S

qkl(x, y)
(
f(x, y, l)− f(x, y, k)

)
. (5)
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The Probability Space

▶ Define a metric λ(·, ·) on R2d × S as

λ
(
(x, y,m), (x̃, ỹ, m̃)

)
= |(x, y)− (x̃, ỹ)|+ d(m, m̃),

where d(·, ·) is the discrete metric.

▶ Let Ω := C([0,∞),R2d)× D([0,∞),S) be endowed with the
product topology of the sup norm topology on C([0,∞),R2d)
and the Skorohod topology on D([0,∞),S)

▶ (X,Y,Λ) ∈ Rd × Rd × S is the coordinate process on Ω.

▶ Let Ft be the σ-field generated by the cylindrical sets on Ω
and set F =

∨∞
t=0 Ft.
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The Martingale Problem

For a given (x, y, k) ∈ R2d × S, we say a probability measure
P(x,y,k) on Ω is a solution to the martingale problem for the
operator A starting from (x, y, k), if
▶ P(x,y,k)((X(0),Y(0),Λ(0)) = (x, y, k)) = 1, and
▶ for each function f ∈ C∞

c (R2d × S),

M(f)
t := f(X(t),Y(t),Λ(t))− f(X(0),Y(0),Λ(0))

−
∫ t

0
Af(X(s),Y(s),Λ(s))ds, t ≥ 0

is an {Ft}-martingale with respect to P(x,y,k).
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The Auxiliary Process

For each k ∈ S, let Z(k)(t) := (X(k)(t),Y(k)(t)) satisfy the following
stochastic differential equation

dX(k)(t) = Y(k)(t)dt,
dY(k)(t) = −

[
c(X(k)(t),Y(k)(t), k)Y(t) +∇xV(X(k)(t), k)

]
dt

+σ(X(k)(t),Y(k)(t), k)dB(t).
(6)
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Preparatory Results (Wu 2001, SPA)

Lemma 1.
For each k ∈ S and for each initial state z = (x, y) ∈ R2d, (6)
admits a unique weak solution P(z)

k , a probability measure on the
space C([0,∞),R2d), and this solution is non-explosive.

Lemma 2.
For each k ∈ S, let

(
Pk(t, z, ·)

)
be the transition probability family

of Markov process
(
(Z(k)(t))t≥0, (P

(z)
k )z∈R2d

)
. For each k ∈ S,

t > 0 and z ∈ R2d, Pk(t, z, dz′) = pk(t, z, z′)dz′, pk(t, z, z′) > 0,
dz′-a.e. and

z → pk(t, z, ·) is continuous from R2d to L1(R2d, dz′).

In particular, the process Z(k) is strong Feller.
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Weak Solution of Each Subsystem

For each k ∈ S and z = (x, y) ∈ R2d, it follows from Lemma 1 that

▶ P(z)
k (Z(0) = z) = 1

▶ ∀f ∈ C∞
c (R2d),

M(k)(f)
t := f(Z(t))− f(Z(0))−

∫ t

0
Lkf(Z(s))ds, t ≥ 0

is a {Gt}-martingale with respect to P(z)
k , where Gt is the

σ-field generated by the cylindrical sets on C([0,∞),R2d) up
to time t.
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Auxiliary Operator

Consider a special Q-matrix Q̂ =
(
q̂kl
)

given by

q̂kl := sup
z∈R2d

qkl(z) for k ̸= l, and q̂kk := −
∑
l̸=k

q̂kl for k ∈ S.

Then we can define

Q̂f(k) =
∑
l∈S

q̂kl
(
f(l)− f(k)

)
, f ∈ Bb(S).

Next we introduce an operator Â on C2
c(R2d × S) as follows:

Âf(x, y, k) := Lkf(x, y, k) + Q̂f(x, y, k), f ∈ C2
c(R2d × S).
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(
q̂kl
)

given by

q̂kl := sup
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▶ Write ω = (ω1, ω2) ∈ Ω := Ω1 × Ω2 with
Ω1 := C([0,∞),R2d) and Ω2 := D([0,∞),S).

▶ For each k ∈ S, there exists a unique martingale solution
Q(k) ∈ P(Ω2) for the operator Q̂ starting from k.

▶ Define τ0(ω2) ≡ 0, and for n ≥ 1,

τn(ω2) := inf{t > τn−1(ω2) : Λ(t, ω2) ̸= Λ(τn−1(ω2), ω2))}.

▶ Q(k) {limn→∞ τn = +∞} = 1.
▶ For each n ≥ 1, there exists a P(Z(τn))

Λ(τn)
∈ P(Ω1) s.t. for any

f ∈ C2
c(R2d),

f(Z(t))− f(Z(τn))−
∫ t

τn
LΛ(τn)f(Z(s))ds, t ≥ τn

is a martingale under P(Z(τn))
Λ(τn)

.
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Weak Solution: Special Case

Theorem 3.
For any given (x, y, k) ∈ R2d × S, there exists a unique martingale
solution P̂(x,y,k) on C([0,∞),R2d)× D([0,∞),S) for the operator
Â starting from (x, y, k).
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Idea of Proof
Stroock–Varadhan Piecing-together Method

▶ For any given (z, k) := (x, y, k) ∈ R2d × S, we define a
sequence of probability measures on (Ω,F) as follows:

P(1) = P(z)
k ×Q(k),

and for n ≥ 1,

P(n+1) = P(n) ⊗ τn

(
P(Z(τn))
Λ(τn)

×Q(Λ(τn))
)
,

where τn(ω) = τn(ω1, ω2) := τn(ω2).
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Toward the General Case

▶ For t > 0, k ∈ S, and A ⊂ S, let

n(t,A) :=
∑
s≤t

1{Λ(s)∈A,Λ(s)̸=Λ(s−)}.

This is a random counting measure on [0,∞)× S.
▶ Also, for k ∈ S and A ⊂ S, we define

ν(k;A) :=
∑

l∈A\{k}
q̂kl.

▶ Then we can show that

ñ(t,A) := n(t,A)−
∫ t

0
ν(Λ(s−);A)ds

is a martingale measure with respect to P̂(x,y,k).
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▶ Define

g(k, l, z) :=
{qkl(z)

q̂kl
1{q̂kl>0}, if k ̸= l, z ∈ R2d,

0, if k = l, z ∈ R2d,

and

ξ(t) :=
∫
[0,t]×S

[g(Λ(s−), l,Z(s))− 1]ñ(ds,dl), t ≥ 0

▶ Observe that ξ is a martingale under P̂(x,y,k).

Lemma 4.
The process M· defined by

Mt := 1 +

∫ t

0
Ms−dξ(s), t ≥ 0,

is a square-integrable martingale with Ê[Mt] = 1 for all t ≥ 0.
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Martingale Solution: the General Case
Theorem 5.
For any given (z, k) ∈ R2d × S, there exists a unique martingale
solution P(z,k) on Ω for the operator A starting from (z, k).
Consequently for any initial data (z, k), the system (1)–(2) has a
unique weak solution.

▶ First for each t ≥ 0 and each A ∈ Ft, define

P(z,k)
t (A) =

∫
A

Mt dP̂(z,k).

▶ {P(z,k)
t }t≥0 is a consistent family of probability measures by

Lemma 4.
▶ By Tulcea’s extension theorem, there exists a unique

probability measure P(z,k) on (Ω,F) s.t. P(z,k) = P(z,k)
t on Ft,

∀t ≥ 0.
▶ This P(z,k) is the desired martingale solution starting from

(z, k).
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Strong Feller Property

▶ For f ∈ Bb(R2d × S), set

Ptf(z, k) := Ez,k[f(X(t),Y(t),Λ(t))], t ≥ 0, (z, k) ∈ R2d × S.

▶ The semigroup {Pt}t≥0 is strong Feller if it maps Bb(R2d × S)
into Cb(R2d × S) for each t > 0.

▶ Usual approaches: coupling method, PDE, etc.
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Related Work
▶ Z. and Yin (2009), On strong Feller, recurrence, and weak

stabilization of regime-switching diffusions, SICON, 48(3),
2003–2031.

▶ Xi and Yin (2013), The strong Feller property of switching
jump-diffusion processes, SPL, 83, 761–767.

▶ Shao (2015), Strong solutions and strong Feller properties for
regime-switching diffusion processes in an infinite state space.
SICON, 53 (2015), 2462–2479.

▶ Xi and Z. (2017), On Feller and Strong Feller Properties and
Exponential Ergodicity of Regime-Switching Jump Diffusion
Processes with Countable Regimes, SICON, 55, 1789–1818.

▶ Kunwai and Z. (2020), On Feller and strong Feller properties and
irreducibility of regime-switching jump diffusion processes with
countable regimes, NAHS, 38, 100946.

▶ …

Approach: coupling method, PDE
Conditions: uniform ellipticity, Lipschitz or Hölder coefficients.
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A Useful Result

Proposition
The semigroup {Pt}t≥0 is strong Feller if and only if for any
A × {l} ∈ B(R2d × S), the function (z, k) 7→ P(t, (z, k),A × {l}) is
lower semicontinuous.

S. Meyn and R. L. Tweedie. (2009), Markov chains and stochastic
stability. Cambridge University Press, Cambridge, second edition.
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Killing

▶ For each k ∈ S, the operator Lk of (4) uniquely determines a
process Z(k).

▶ The killed process Z̃(k):

Ek[f(Z̃(k)(z)(t))]

= Ek

[
f(Z(k)(z)(t)) exp

{∫ t

0
qkk(Z(k)(z)(s))ds

}]
.

▶ The killed process Z̃(k) is strong Feller.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

▶ Denote by {P̃(k)(t, z,A) : t ≥ 0, z ∈ R2d,A ∈ B(R2d)} the
sub-transition probability families of the killed process Z̃(k).

▶ We have

P(t, (z, k),A × {l})

= δklP̃(k)(t, z,A) +
+∞∑
m=1

∫
· · ·
∫

0<t1<···<tm<t

∑
l1∈S\{l0},l2∈S\{l1},··· ,lm∈S\{lm−1},

l0=k, lm=l∫
R2d

· · ·
∫
R2d

P̃(l0)(t1, z,dz1)ql0l1(z1)P̃(l1)(t2 − t1, z1,dz2) · · ·

× qlm−1lm(zm)P̃(lm)(t − tm, zm,A)dt1dt2 · · · dtm.

▶ P̃(k)(t, z,A) and every term in the series are lower
semicontinuous with respect to z whenever A ∈ B(R2d).
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Strong Feller Property

Theorem 6.
The process (X,Y,Λ) has the strong Feller property.

Remarks
Compared with the aforementioned references, in this work
▶ the diffusion matrix is degenerate,
▶ no Lipschitz or Hölder continuity on the coefficients c and ∇V,
▶ the switching rates qkl are only assumed to be bounded and

measurable,
▶ different approach.
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Exponential Ergodicity

▶ The Markov process (Z,Λ) is said to be exponentially ergodic
if there exist a probability measure π(·), a constant θ < 1 and
a finite-valued function Θ(x, k) such that

∥P(t, (z, k), ·)− π(·)∥TV ≤ Θ(z, k)θt

for all t ≥ 0 and all (z, k) ∈ R2d × S.
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Theorem 7.
In addition to the standing assumptions, suppose that
(a) the matrix Q is irreducible on R2d in the following sense: for

any distinct k, l ∈ S, there exist r ∈ N, k0, k1, . . . , kr ∈ S with
ki ̸= ki+1, k0 = k and kr = l such that the set
{z ∈ R2d : qkiki+1(z) > 0} has positive Lebesgue measure for
i = 0, 1, . . ., r − 1.

(b) there exists a nonnegative function Ṽ ∈ C2(R2d × S;R+)
satisfying Ṽ(z, k) → ∞ as |z| ∨ k → ∞ as well as a
Foster-Lyapunov drift condition:

AṼ(z, k) ≤ −αṼ(z, k) + β, (z, k) ∈ R2d × S,

where α, β > 0 are constants.
Then Markov process (Z(·),Λ(·)) is exponentially ergodic.
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Remark
Sufficient conditions on the potential function V, the damping
coefficient c, and the switching rate matrix Q(·) can be derived.
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An Example

▶ d = 1 and S = {1, 2, . . . }.
▶ c(x, y, k) = 0 for |x| ≤ 1 and c(x, y, k) =

√
k

2 for |x| ≥ 2 and
(y, k) ∈ R× S.

▶ V(·, k) ∈ C1(R) and satisfies V(x, k) = 0 for |x| ≤ 1 and
V(x, k) = (2 − 1

k)x4 for |x| ≥ 2 and k ∈ S (so the potential
kicks in only when the particle is outside the ball {|x| < 1}).

▶ for (x, y) ∈ R2

qkj(x, y) :=
k

2j(k + (1 + x2 + y2)−1)
for j ̸= k,

qkk(x, y) := −
∑
j̸=k

qkj(x, y).

⇝ The system is exponentially ergodic.
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▶ occupation empirical measure

Lt(·) :=
1
t

∫ t

0
δ(Z(s),Λ(s))(·)ds,

where δ· denotes the Dirac measure.
▶ the process-level empirical measures

Rt(·) :=
1
t

∫ t

0
δ(Z(s+·),Λ(s+·))(·)ds,

where (Z(s + ·),Λ(s + ·)) denotes the path [0,∞) ∋ t →
(Z(s + t),Λ(s + t)) ∈ Ω = C([0,∞),R2d)× D([0,∞),S).

▶ For each t > 0, Lt : Ω 7→ P(R2d × S) and Rt : Ω 7→ P(Ω).
▶ Question: Do they satisfy LDPs?
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Theorem 8 (Wu, 2001).
Let (Ω,F , {Ft},Zt, {Pz, z ∈ E}) be a Markov process valued in a
Polish space E with semigroup {Pt}. Suppose {Pt} is strong Feller
and irreducible. Then the following are equivalent:
(a) Pz{Lt ∈ ·} satisfies the LDP on P(E) w.r.t. the  τ -topology

with the rate function J (the Donsker-Varadhan level-2
entropy functional); uniformly for z in compacts.

(b) Pz{Rt ∈ ·} satisfies the LDP on P(Ω) w.r.t. the  τp-topology
with the rate function H (the Donsker-Varadhan level-3
entropy functional); uniformly for z in compacts.

(c) the process satisfies the hyper-exponential recurrence
property: for any λ > 0, there exists some compact K ⊂⊂ E
such that for any K′ ⊂⊂ E,

sup
z∈K′

Ez[exp(λτK(T))] < ∞,

where τK(T) := inf{t ≥ T : Zt ∈ K}.
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Corollary 9.
Suppose there exists a norm-like function 1 ≤ W(z, k) satisfying

lim
|z|+k→∞

AW(z, k)
W(z, k) = −∞. (7)

Then the process (Z,Λ) possesses a unique invariant measure
π ∈ P(E). Moreover, for any λ > 0, we can find a compact
K ⊂⊂ Rd × S such that for any K′ ⊂⊂ Rd × S and T ≥ 0, we have

sup
(z,k)∈K′

Ez,k[exp{λτK(T)}] < ∞,

where τK(T) := inf{t ≥ T : (Z(t),Λ(t)) ∈ K}. Consequently Lt,Rt
satisfy the large deviation principles of Theorem 8.
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The van der Pol equation

Let d = 1 and S = {1, 2}. For (x, y, k) ∈ R2 × {1, 2}, define

c(x, y, k) = α(k)(x2 − 1), V(x, k) = 1
2β(k)x

2,

Q(x, y) := (qkl(x, y)) =
(

− exp(−|x|3) exp(−|x|3)
H̃

|x|2+|y|2+1 − H̃
|x|2+|y|2+1

)
,

where α(1) = 1, α(2) = 2, β(1) = 2 and β(2) = 1, and H̃ is an
arbitrary positive constant. Moreover, let σ(x, y, k) be “nice” so
that all assumptions are satisfied.

Detailed computations using appropriate Lyapunov function reveal
that the van der Pol system is exponentially ergodic and satisfies
the large deviation principles of Theorem 8.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The van der Pol equation

Let d = 1 and S = {1, 2}. For (x, y, k) ∈ R2 × {1, 2}, define

c(x, y, k) = α(k)(x2 − 1), V(x, k) = 1
2β(k)x

2,

Q(x, y) := (qkl(x, y)) =
(

− exp(−|x|3) exp(−|x|3)
H̃

|x|2+|y|2+1 − H̃
|x|2+|y|2+1

)
,

where α(1) = 1, α(2) = 2, β(1) = 2 and β(2) = 1, and H̃ is an
arbitrary positive constant. Moreover, let σ(x, y, k) be “nice” so
that all assumptions are satisfied.

Detailed computations using appropriate Lyapunov function reveal
that the van der Pol system is exponentially ergodic and satisfies
the large deviation principles of Theorem 8.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Overdamped Langevin equation

Consider the overdamped Langevin equation

dX(t) = −∇xV(X(t),Λ(t))dt + dW(t), (8)

in which W is a 1-dimensional standard Brownian motion, the
potential is given by

V(x, 1) = x4

4 , V(x, 2) := (x2 + 1)1{|x|≤1} + 2|x|1{|x|>1},

and Λ ∈ S = {1, 2} is the switching component with generator
Q(x) = (qkl(x)):

Q(x) =
(
−1 1
|x| −|x|

)
. (9)
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▶ Using appropriate Lyapunov function, we can verify that the
system (8)–(9) is exponentially ergodic and
hyper-exponentially recurrent (and thus it satisfies the LDPs
of Theorem 8).

▶ However, the subsystem

dX(2)(t) = −∇xV(X(2)(t), 2)dt + dW(t) (10)

is exponentially ergodic but not hyper-exponentially recurrent.
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Thank you very much!
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